全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 统计软件培训班VIP答疑区
2611 8
2011-07-10
连老师,我在估计ARCH模型的时候,命令为arch x y, earch(1) egarch(1) ltolerance(0.0001),但是对数似然函数值之差小于我的设定0.0001时程序还在运行,这是为什么?另外,我发现arch命令运行太慢,有没有使其运行快的方法。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-7-11 08:54:48
这应该不会呀,我此前用MLE估计模型时,用过这个选项,都是没有问题的。
你把运行的结果截个图给我看看。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-7-11 13:12:45
arch x y , earch(1) egarch(1) het(z) ltolerance(0.0001)

Number of gaps in sample:  8  
(note: conditioning reset at each gap)


(setting optimization to BHHH)
Iteration 0:   log likelihood =  586.42721  
Iteration 1:   log likelihood =  597.54868  
Iteration 2:   log likelihood =  603.71421  
Iteration 3:   log likelihood =  607.30761  
Iteration 4:   log likelihood =   609.5603  
(switching optimization to BFGS)
Iteration 5:   log likelihood =   610.3975  
Iteration 6:   log likelihood =  610.52171  
Iteration 7:   log likelihood =  610.81827  
Iteration 8:   log likelihood =  610.89797  
Iteration 9:   log likelihood =  610.90555  
Iteration 10:  log likelihood =  610.90643  
Iteration 11:  log likelihood =  610.90911  
Iteration 12:  log likelihood =  610.90912  *** 应该在此处就应该停止了

Iteration 13:  log likelihood =  610.90922  
Iteration 14:  log likelihood =  610.90924   
(switching optimization to BHHH)
Iteration 15:  log likelihood =  610.90924  
Iteration 16:  log likelihood =  610.90925  (backed up)   
Iteration 17:  log likelihood =  610.90925  (backed up)
Iteration 18:  log likelihood =  610.90925  (backed up)
Iteration 19:  log likelihood =  610.90925  (backed up)
(switching optimization to BFGS)
Iteration 20:  log likelihood =  610.90925  (backed up)
.................
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-7-11 14:27:15
(setting optimization to BHHH)
Iteration 0:   log likelihood =  439.03055  
Iteration 1:   log likelihood =  450.28815  
Iteration 2:   log likelihood =  465.40009  
Iteration 3:   log likelihood =  467.02226  
Iteration 4:   log likelihood =  467.16146  
(switching optimization to BFGS)
Iteration 5:   log likelihood =  467.67814  
Iteration 6:   log likelihood =  467.82723  
Iteration 7:   log likelihood =   467.8609  
Iteration 8:   log likelihood =  467.89386  
Iteration 9:   log likelihood =  467.89716  
Iteration 10:  log likelihood =  467.89747  
Iteration 11:  log likelihood =  467.89962  
Iteration 12:  log likelihood =  467.89999  
Iteration 13:  log likelihood =  467.90005  
Iteration 14:  log likelihood =  467.90007  (backed up)
(switching optimization to BHHH)
Iteration 15:  log likelihood =   467.9001  
Iteration 16:  log likelihood =  467.90011  (backed up)
Iteration 17:  log likelihood =  467.90011  (backed up)
Iteration 18:  log likelihood =  467.90011  (backed up)
Iteration 19:  log likelihood =  467.90011  (backed up)
(switching optimization to BFGS)
Iteration 20:  log likelihood =  467.90011  (backed up)
Iteration 21:  log likelihood =  467.90011  (backed up)
Iteration 22:  log likelihood =  467.90011  (backed up)
Iteration 23:  log likelihood =  467.90011  (backed up)
Iteration 24:  log likelihood =  467.90011  (backed up)
Iteration 25:  log likelihood =  467.90011  (backed up)
Iteration 26:  log likelihood =  467.90011  (backed up)
Iteration 27:  log likelihood =  467.90011  (backed up)
Iteration 28:  log likelihood =  467.90011  (backed up)
Iteration 29:  log likelihood =  467.90011  (backed up)
(switching optimization to BHHH)
Iteration 30:  log likelihood =  467.90011  (backed up)
Iteration 31:  log likelihood =  467.90011  (backed up)
Iteration 32:  log likelihood =  467.90011  (backed up)
Iteration 33:  log likelihood =  467.90011  (backed up)
Iteration 34:  log likelihood =  467.90011  (backed up)
(switching optimization to BFGS)
Iteration 35:  log likelihood =  467.90011  (backed up)
Iteration 36:  log likelihood =  467.90011  (backed up)
Iteration 37:  log likelihood =  467.90011  (backed up)
Iteration 38:  log likelihood =  467.90011  (backed up)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-7-11 15:04:19
hehe,我看了help ,可能是由于“If the optimizer becomes stuck with repeated  "(backed up)" messages, the gradient probably still contains substantial values, but an uphill direction cannot be  found for the likelihood.  

所以我就设定gtolerance(999)选项,但是可能不是全局最优,或者设定最大的iterate次数,如iterate(50),但是发现与设定gtolerance(999)选项的结果差异很大。这时候应该怎么办?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-7-12 08:36:25
秋日私语 发表于 2011-7-11 13:12
arch x y , earch(1) egarch(1) het(z) ltolerance(0.0001)

Number of gaps in sample:  8  
(note: conditioning reset at each gap)


(setting optimization to BHHH)
Iteration 0:   log likelihood =  586.42721  
Iteration 1:   log likelihood =  597.54868  
Iteration 2:   log likelihood =  603.71421  
Iteration 3:   log likelihood =  607.30761  
Iteration 4:   log likelihood =   609.5603  
(switching optimization to BFGS)
Iteration 5:   log likelihood =   610.3975  
Iteration 6:   log likelihood =  610.52171  
Iteration 7:   log likelihood =  610.81827  
Iteration 8:   log likelihood =  610.89797  
Iteration 9:   log likelihood =  610.90555  
Iteration 10:  log likelihood =  610.90643  
Iteration 11:  log likelihood =  610.90911  
Iteration 12:  log likelihood =  610.90912  *** 应该在此处就应该停止了
A: 表面上看,似乎是0.00001,但实际上可能是四舍五入的结果,有可能是 0.000013。

Iteration 13:  log likelihood =  610.90922  
Iteration 14:  log likelihood =  610.90924   
(switching optimization to BHHH)
Iteration 15:  log likelihood =  610.90924  
Iteration 16:  log likelihood =  610.90925  (backed up)   
Iteration 17:  log likelihood =  610.90925  (backed up)
Iteration 18:  log likelihood =  610.90925  (backed up)
Iteration 19:  log likelihood =  610.90925  (backed up)
(switching optimization to BFGS)
Iteration 20:  log likelihood =  610.90925  (backed up)
.................
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群