全部版块 我的主页
论坛 经济学论坛 三区 行为经济学与实验经济学
642 4
2023-02-13





•这一次推出的是面向聊天任务的GPT,即Chat版本的GPT,将来可能会有很多其他任务形态的GPT,比如医疗场景中的诊断GPT。大模型作为机器医生与人类交互,还需要解决与人类共情的难题。毕竟看病过程中,病人总是希望得到医生心理上的安慰与同情。

•以ChatGPT为代表的大模型对人工智能核心竞争力的形成具有决定性作用。未来5年到10年,我们必须在战略上充分重视大模型技术的发展,但是要注意保持冷静心态,不要盲目乐观。

ChatGPT,全名为“Chat Generative Pre-Trained Transformer”,其中,GPT(Generative Pre-training Transformer)译成中文为“预训练生成模型”,它是一款由美国人工智能研究机构OpenAI研发的对话式大型语言模型。

自2022年11月30日发布以来,至2023年1月末,ChatGPT的全球活跃用户已达1亿,成为史上用户增长速度最快的消费级应用程序。

硅谷科技公司PerceptIn创始人刘少山在接受《中国新闻周刊》采访时表示,ChatGPT有更好的语言理解能力,它可以更像一个通用的任务助理,能够和不同行业结合,衍生出很多应用场景。

在医疗领域,已经有很多学者开始探索ChatGPT的边界。ChatGPT还在一项研究中通过了美国执业医师资格考试(USMLE)。还有学者利用ChatGPT进行心血管疾病、阿尔兹海默病等疾病的诊疗。

在医疗领域,ChatGPT究竟有多大的潜力,它还存在什么局限,将会有怎样的升级?2月9日,澎湃科技连线复旦大学计算机科学技术学院肖仰华教授,和他聊了聊ChatGPT在医疗领域的可能性和存在的问题。

在肖仰华看来,单纯从医疗领域来聊ChatGPT,是把主题聊“小”了,他认为,对ChatGPT的讨论,格局可以更大。但肖仰华还是很耐心地回答了澎湃科技提出的问题。

肖仰华告诉澎湃科技,ChatGPT已经远远超出以前人工智能的水平,可能对行业产生深刻影响。目前在医疗领域,ChatGPT可以较好地完成助理类的工作,比如导诊,辅助医生自动生成病例或摘要,进行医疗健康咨询等。“在很多方面,ChatGPT可以极大地提质提效。可以预见,医生的时间和精力可以在ChatGPT类似产品的协助下得到极大解放。”肖仰华说。

目前来看,ChatGPT所生成的内容较为基础、泛化,在提供专业的医学服务上面临挑战。肖仰华表示,“从具体实现技术路线上来讲,ChatGPT面向领域的优化路线已经十分清晰,不存在太大的障碍。只要将医疗数据与医疗知识库准备好,进行体现领域特点的持续训练,大模型很快就会学到更多医疗领域的专门知识。不过,领域数据如何有效治理、领域知识如何植入、领域大模型如何廉价训练仍有较大研究空间。此外,医疗数据比较敏感,涉及用户隐私,是个不可回避的问题。”

“在医疗领域应用ChatGPT需要慎重,医疗对信息准确性、安全性和用户隐私、人文关怀、医学伦理等要求比较高,学界和业界可能还要花一段时间去探索如何去规避道德与伦理风险,才有可能让ChatGPT在医疗中发挥积极作用。”肖仰华说。

肖仰华还提醒道,ChantGPT最近在学术界带来的乐观多来自谷歌等学者在《Emergent Abilities of Large Language Models》(2022年6月)中的观点,然而必须要谨慎论证大模型由于规模效应所带来的涌现行为。涌现出了怎样的智能?如何可信论证各种涌现?这里虽然采取了“智能涌现”的说法,但是大模型的涌现行为仍然需要深入细致的论证。“我在此提醒读者 ,不要盲从。”

防止ChatGPT一本正经地胡说八道

澎湃科技:医疗行业在使用 ChatGPT的时候,有没有一些需要注意的问题?

肖仰华:首先,需要持续关注ChatGPT在医疗领域的泛化能力。所谓泛化能力,是指统计模型不出现在训练数据中的样本上,仍然能够做出准确预测的能力。通俗来说,就是举一反三的能力。我们人类是智能的,集中的体现就是对少量样本进行学习之后,我们能在未来未见过的类似样本中做出准确判断或者响应。

大模型本质是一个统计模型,它能在输入和输出之间建立起很强的统计关联,它就是通过这种统计关联来解决问题的。当你输入一个问题,它看到这个问题中某些词或者某些词的语义,发现和它以前看过的文本中一些词的统计关联特别强,它就可以产生相应文本作为答案。那么这种能力能否持续迁移到没见过的问题呢?往往会有困难。ChatGPT之所以能够成功,一个重要原因就是其基础模型GPT-3系列模型在精心与充分的训练下,涌现出了高度泛化的语言理解能力。这种能力能否持续迁移到特定领域,如何在不遗忘通用语言的能力同时,合理适配医疗领域,仍然有待技术检验。

其次,要密切关注ChatGPT的事实错误、逻辑错误等问题。ChatGPT目前经常出的问题就是一本正经地胡说八道。比如问某个历史人物的生辰信息,ChatGPT很难给出精准答案。在ChatGPT一本正经回复里,往往存在前后不一致的情况。作为一种神经模型,ChatGPT接受某个输入问题时,所激发的神经网络运算模式,非常接近人脑接受文字或语音输入后大脑神经元的激活与放电模式。客观评价,这是个了不起的进步。但是,人类智能的进化毕竟经历了漫长的岁月洗礼。ChatGPT所激发的内容在精准度与逻辑合理性等方面仍有差距。事实上,人类慢条斯理的逻辑推理过程,如何通过神经网络有效实现,仍然是个难题。

事实错误本质上归结于知识缺失。前面已经谈到,未来优化ChatGPT的重要思路之一就是知识植入,特别是领域(专业)知识,从而缓解事实错误。逻辑错误包括命题逻辑、数理逻辑、计算逻辑等错误。这里不一一展开。作为一个生成模型,如何能在统计生成过程中规避逻辑错误,仍然是个非常活跃的研究领域。总体而言,需要研究与发展模拟人类大脑双系统认知结构的认知智能技术,才有可能缓解这一问题。这或许是ChatGPT的后来者能否居上的关键所在。

第三,它还存在跟人类价值观对齐的问题。比如喝酒是否有益健康,不同的专家有不同的观点,那么大模型到底是应该支持哪一派的观点呢?再比如对于安乐死,ChatGPT应该持什么态度?在医学伦理的一些边缘和模糊的地带,大模型应该和哪一种价值观对齐,这是一个难以回避的问题。

第四,是用户隐私的问题。ChatGPT需要从海量数据进行学习,其生成的内容可能来自于某一个人的隐私内容。在回答问题的过程中,有没有可能暴露特定个人或人群的某些隐私,会暴露多少?是否存在着某些漏洞,使得通过特定的提示能够诱导出敏感内容?对于这个问题,我们现在还不清楚。但是,就像当年的大数据应用无意中侵犯了人类隐私一样,我们必须十分警惕大模型应用中侵犯人们的隐私,甚至暴露国家敏感信息。

最后,还要提一下大模型的遗忘能力问题。让大模型记住一件事情是容易的,但是让它忘记一件事情很困难。因为它的记忆是通过神经网络的分布式存储。某个事实一经存储,就会分布式地嵌入它的“神经网络”中,我们甚至难以追踪相应的负责记忆该事实的神经元。所以某种程度上,大模型一旦训练完成,消除特定事实就会相对困难。当然一种直接的方法是从语料中清除特定事实,但这种做法会带来大模型高昂的训练成本。

我们为什么让大模型学会遗忘呢?因为人类社会总有些敏感的事实,只有彻底遗忘才能不犯禁忌,这是人类文化的一种典型现象。大模型要想为人类服务,迟早要学会这种能力。大模型的遗忘问题再进一步拓展,还涉及大模型的事实可控编辑问题、大模型的知识更新问题,已经属于人工智能博士生需要研究的问题,再次不再赘述。

需要指出的是,ChatGPT的上述种种问题,并不妨碍其大规模商业应用。几乎没有哪种技术要等到100%完美才能大规模应用。事实上,很多产品在设计思路、工程中的人机结合方案,可以有效规避或者弥补上述问题。比如,可以对应用场景进行区分,在非严肃场景,自动生成偶尔犯错的文本,再经人类修正,已经能极大提升人类工作效率。

在即将结束时,我想补充一下我们应该保持一种怎样的态度对待ChatGPT的发展?为什么要谈这个问题,最近一两个月的媒体,无异于发生了一场8级地震。企业家、专家、媒体、技术、资本、各行各业均对ChatGPT这一变革性技术从各种角度进行了解读,可谓热闹非凡。我想借用比尔•盖茨曾经说过的话回应这一问题:“我们总是高估短期的变化,却低估中长期的变革。”

从短期看,也就是未来5年到10年,我们必须在战略上充分重视大模型技术的发展,但是要注意保持冷静心态,不要盲目乐观。从事人工智能研究技术人员往往盲目乐观,认为很快大模型能做很多事,甚至代替人类从事科学发现;与之形成鲜明对比,恰是不从事人工智能研究的外行的盲目悲观,认为大模型很快就要取代他们的工作。这两种心态有着本质上相同的原因。事实上,以大模型为代表的人工智能进展,很多时候不是在证明机器有多智能,而是在间接证明人类社会当前的很多行为设计有多愚蠢,比如教育中的各种考试、各种“复制+修改”就能胜任的文案工作。比如,最近很多机构利用ChatGPT先后在各种专业资格考试中获得了通过,这诚然是技术进步的一种体现。受益于大模型的思维链等技术,大模型的推理能力得到极大提升,因而在考试这类需要一定推理能力的任务中取得进展。然而这种推理能力仍然十分有限的,至少离人类专家的直觉推理水平仍有遥远距离。更为讽刺地是,这个进展证明我们的评测方式偏离了教育的初衷。“死记硬背+有限推理”,似乎就可以胜任当下大多数考试。与其赞叹大模型的进展,不如更深刻地反思人类社会自身发展过程中的诸多问题。以创新为根本目的的教育,是当前这种评测方式真能准确评价的吗?我们应该充分抓住人工智能发展契机,对人类社会的诸多设计进行深刻反思,促进教育等行业的高质量发展。

从长期来看,也就是未来20年,甚至50年,我们必须在战略上警醒人工智能对于人类社会发展的影响,并对其开展细致的深入的研究,而不是在人工智能遭遇了人类的调戏后轻蔑地下一个“不过如此”的结论。人工智能发展已经不是第一次在挑战人性的底线了。不管是人类的动物性与社会性,都在持续地被机器所模拟、所实现,从计算到游戏,从听音识图到能说会道,从写诗到作画。最近的认知智能研究,仍在持续将人类的高级认知能力,比如幽默认知、情感认知、社会认知赋予机器。那么到底什么是人性不容侵犯的领地呢?抑或真像某些哲学家认为的“人是机器”?宗教认为人类的本性是“自我超越”,然而,即便这个最根本特性似乎也会受到机器智能的挑战。这些问题的深入讨论,要比“机器是否消灭人类”的空洞唱和,有意义得多。

引自-https://www.thepaper.cn/newsDetail_forward_21900101



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2023-2-13 11:50:11
851.jpg 469.jpeg
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2023-2-13 12:56:00
感谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2023-2-13 19:06:48
谢谢分享呀!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2023-2-14 08:07:16
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群