全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
4957 4
2011-07-21
最近读到stata版上一个过去的帖子
https://bbs.pinggu.org/thread-96285-1-1.html

个人想说来画一下,不同函数下【累积机率密度函数,probit与logit假设不一样】的图,
以验证过去某位大大说的logit会有厚尾的情况。

*logistic function的画法【利用对数函数】
graph tw function Eta=exp(x)/(1+exp(x)),range(-3 3)
*累积标准常态的画法【利用normal累积的,非累积的常态用normalden】
graph tw function normal(x),range(-3 3)

*画在一起,看看两者有何差异 【从这里应当可以看到罗吉斯函数厚尾的情况,尾巴翘地比较高啦!】
graph tw function Eta=exp(x)/(1+exp(x)),range(-3 3) || function Phi=normal(x),range(-3 3)

有图,我想会比较有感觉…
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-7-21 12:57:59
大师说的很好 希望贴图出来看看
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-7-21 17:38:38
把帖子上的一些文字复制后贴到stata的command视窗下,
您就可以看到图了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-7-21 20:23:10
嗯~~~~lz说的好哈~~~不过我的经验实践当中很多时候两者结果差别不大。一般follow literature就好了吧。类似的模型大家都喜欢用什么就用什么咯。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-8-19 14:02:38
不会做回归
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群