<!-- markdown css tag --><div class="pinggu_markdown">
<div class="pinggu_markdown__html"><h1 id="理论推导">理论推导</h1>
<p>盈余可分解为现金流与总应计两个部分。现金流是在既定会计期间已经支付和实现的现金流动;总应计可简单理解为在既定会计期间在会计账目上已经确认的收入或者支出,但现实的资金流动并为发生。同时现金流的发生会抵消响应部分的应计。如在t-1期,卖出100万的产品,但未收到资金,在会计记账上为应收账款100万;到第t期,收到100万的货款,收取现金100万,这是实际发生的现金流,同时这部分发生的现金流会抵消应收账款100万。<br>
即盈余为E,现金流为CF,总应计为Accruals,可写为<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mrow><mi>E</mi><mo>=</mo><mi>C</mi><mi>F</mi><mo>+</mo><mi>A</mi><mi>c</mi><mi>c</mi><mi>r</mi><mi>u</mi><mi>a</mi><mi>l</mi><mi>s</mi></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">E=CF+Accruals \tag{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.68333em; vertical-align: 0em;"></span><span class="mord mathit" style="margin-right: 0.05764em;">E</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.76666em; vertical-align: -0.08333em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span class="mord mathit">A</span><span class="mord mathit">c</span><span class="mord mathit">c</span><span class="mord mathit" style="margin-right: 0.02778em;">r</span><span class="mord mathit">u</span><span class="mord mathit">a</span><span class="mord mathit" style="margin-right: 0.01968em;">l</span><span class="mord mathit">s</span></span><span class="tag"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
同时,<strong>假设现金支付和收取实际发生的时点与相应的会计确认的试点之间不超过一个会计时段</strong>。<br>
根据实际发生和会计确认的时点差异,现金流符号做出以下规定:<em>下标表示实际支付和收取发生的时点,上标表示会计确认的时点</em>。</p>
<h2 id="现金流分析">现金流分析</h2>
<p>根据假设,本期的实际发生的现金流可分为三个部分:1.上期确认的;2.本期确认的;3.下一期确认的。可写为:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mrow><mi>C</mi><msub><mi>F</mi><mi>t</mi></msub><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>+</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mi>t</mi></msubsup><mo>+</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">CF_t=CF_t^{t-1}+CF_t^t+CF_t^{t+1} \tag{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.83333em; vertical-align: -0.15em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.09056em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.11411em; vertical-align: -0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow><annotation encoding="application/x-tex">CF_t^{t-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.09999em; vertical-align: -0.245756em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.854239em;"><span class="" style="top: -2.45424em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.10313em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.245756em;"><span class=""></span></span></span></span></span></span></span></span></span></span>为上期确认的本期在实际发生的现金流,如上期的应收账款在本期收到货款;<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mi>t</mi></msubsup></mrow><annotation encoding="application/x-tex">CF_t^t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.04056em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.793556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span></span></span></span></span>表示本期确认本期实际发生的现金支付和收取,如本期的现收现付业务;<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><annotation encoding="application/x-tex">CF_t^{t+1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.09999em; vertical-align: -0.245756em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.854239em;"><span class="" style="top: -2.45424em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.10313em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.245756em;"><span class=""></span></span></span></span></span></span></span></span></span></span>为本期实际收取和支付的现金,需要等到下一期才能进行会计确认,如本期收取预收账款(预收账款算负债),等到下一期才交付货物/商品,才能确认现金收取。</p>
<h2 id="应计分析">应计分析</h2>
<p>应计分为初始应计和转结应计两种。</p>
<h3 id="初始应计(opening-accrual)">初始应计(Opening accrual)</h3>
<p>初始应计可理解应计的计入,为两种情况:1.已经确认收入,但现金支付和收取没有实际发生,例如:交付货物,但未收到资金,记为应收账款,属于初始应计,借:应收账款 贷:主营业务收入;2.已经收取或支付现金,但还未进行会计确认,例如:收到预收款,但未交付货物,记为预收账款,也属于初始应计,借:银行存款 贷:预收账款。<br>
第一种情况的应计可记为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>o</mi></msubsup></mrow><annotation encoding="application/x-tex">A_{CF_{t+1}^t}^o</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.28896em; vertical-align: -0.605625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.664392em;"><span class="" style="top: -2.3541em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.605625em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,例如第t期产生的应收账款导致的现金流在t期已经确认,但需要等到t+1期才能实际产生,由于应收账款和下一期实际收到的资金可能存在误差,因此,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>o</mi></msubsup></mrow><annotation encoding="application/x-tex">A_{CF_{t+1}^t}^o</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.28896em; vertical-align: -0.605625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.664392em;"><span class="" style="top: -2.3541em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.605625em;"><span class=""></span></span></span></span></span></span></span></span></span></span>导致的现金流为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>ϵ</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><annotation encoding="application/x-tex">CF_{t+1}^t+\epsilon_{t+1}^t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.09999em; vertical-align: -0.306439em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.793556em;"><span class="" style="top: -2.45189em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.306439em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.09999em; vertical-align: -0.306439em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.793556em;"><span class="" style="top: -2.45189em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.306439em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,即:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(3)</mtext></mtd><mtd><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>o</mi></msubsup><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>ϵ</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">A_{CF_{t+1}^t}^o=CF_{t+1}^t+\epsilon_{t+1}^t \tag{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.4041em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.39918em; vertical-align: -0.555625em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">3</span></span><span class="mord">)</span></span></span></span></span></span></span></p>
<p>第二种情况的应计可记为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><mi>o</mi></msubsup></mrow><annotation encoding="application/x-tex">A_{CF_t^{t+1}}^o</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.28896em; vertical-align: -0.605625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.664392em;"><span class="" style="top: -2.29776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.605625em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,例如当期产生的预收账款,现金的支付已经在t期实际发生,但需要到t+1期才能得到确认,那么t期实际产生的现金流会<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><annotation encoding="application/x-tex">CF_t^{t+1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.09999em; vertical-align: -0.245756em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.854239em;"><span class="" style="top: -2.45424em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.10313em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.245756em;"><span class=""></span></span></span></span></span></span></span></span></span></span>抵消下一期才会确认的应计<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><mi>o</mi></msubsup></mrow><annotation encoding="application/x-tex">A_{CF_t^{t+1}}^o</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.28896em; vertical-align: -0.605625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.664392em;"><span class="" style="top: -2.29776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.605625em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,在t+1确认时,误差可记入其他科目,不需要包含误差项,因此<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(4)</mtext></mtd><mtd><mrow><mo>−</mo><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><mi>o</mi></msubsup><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">-A_{CF_t^{t+1}}^o=CF_t^{t+1} \tag{4}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord">−</span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.34776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.41973em; vertical-align: -0.555625em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">4</span></span><span class="mord">)</span></span></span></span></span></span></span></p>
<h3 id="转结应计(closing-accrual)">转结应计(Closing accrual)</h3>
<p>转结应计可理解为应计的销账,也可分为两种情况,分别举两个例子,与初始应计的两种情况相对应:1.收到上一期的卖出货物的款项,因此,上一次产生的相应的应收账款应该抵消,如 借:银行存款 贷:应收账款;2.上期产生的预收账款导致了上期实际的现金流入,只是等到本期才确认。借:预收账款 贷:主营业务收入。<br>
第一种情况的应计可记为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow><mi>c</mi></msubsup></mrow><annotation encoding="application/x-tex">A_{CF_t^{t-1}}^c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.28896em; vertical-align: -0.605625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.664392em;"><span class="" style="top: -2.29776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.605625em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,t期实际收到的现金<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow><annotation encoding="application/x-tex">CF_t^{t-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.09999em; vertical-align: -0.245756em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.854239em;"><span class="" style="top: -2.45424em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.10313em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.245756em;"><span class=""></span></span></span></span></span></span></span></span></span></span>在考虑误差的情况下可抵消t-1期产生的应计,即:<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(5)</mtext></mtd><mtd><mrow><mo>−</mo><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow><mi>c</mi></msubsup><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>+</mo><msubsup><mi>ϵ</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">-A_{CF_t^{t-1}}^c=CF_t^{t-1}+\epsilon_t^{t-1} \tag{5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord">−</span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.34776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.41973em; vertical-align: -0.555625em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">5</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
第二种情况的应计可记为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>c</mi></msubsup></mrow><annotation encoding="application/x-tex">A_{CF_{t-1}^{t}}^c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.28896em; vertical-align: -0.605625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.664392em;"><span class="" style="top: -2.3541em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.605625em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,上期产生的预收账款导致了上期实际的现金流入,即有<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(6)</mtext></mtd><mtd><mrow><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>c</mi></msubsup><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">A_{CF_{t-1}^{t}}^c=CF_{t-1}^t \tag{6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.4041em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.39918em; vertical-align: -0.555625em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">6</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
同时,应计分为初始应计和转结应计两种,那么,t的总应计可分解为以下两种。1.当期需要计入的初始应计:本期产生的“先有实际现金流,等到下一期才确认”的应计,如收到的预收款项,以及”先确认,下一期才产生实际现金流“的应计,如产生的应收账款;2.当期需要计入的转结应计:转结的上期产生的”先有实际现金流,等到本期才确认“的应计,以及转结上期产生的“先确认,本期才产生实际现金流”的应计,可记为:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(7)</mtext></mtd><mtd><mrow><mi>A</mi><mi>c</mi><mi>c</mi><mi>r</mi><mi>u</mi><mi>a</mi><mi>l</mi><msub><mi>s</mi><mi>t</mi></msub><mo>=</mo><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>o</mi></msubsup><mo>+</mo><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><mi>o</mi></msubsup><mo>+</mo><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow><mi>c</mi></msubsup><mo>+</mo><msubsup><mi>A</mi><mrow><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow><mi>c</mi></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">Accruals_t=A_{CF_{t+1}^t}^o+A_{CF_t^{t+1}}^o+A_{CF_t^{t-1}}^c+A_{CF_{t-1}^{t}}^c \tag{7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.84444em; vertical-align: -0.15em;"></span><span class="mord mathit">A</span><span class="mord mathit">c</span><span class="mord mathit">c</span><span class="mord mathit" style="margin-right: 0.02778em;">r</span><span class="mord mathit">u</span><span class="mord mathit">a</span><span class="mord mathit" style="margin-right: 0.01968em;">l</span><span class="mord"><span class="mord mathit">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.4041em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.34776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">o</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.34776em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864636em;"><span class="" style="top: -2.20946em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -2.90432em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.290543em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.27002em; vertical-align: -0.555625em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.714392em;"><span class="" style="top: -2.4041em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.07153em;">C</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.784143em;"><span class="" style="top: -2.18849em; margin-left: -0.13889em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -2.8448em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.371036em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.555625em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.30563em; vertical-align: -0.555625em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">7</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
将(3)-(6)代入(7)可到:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(8)</mtext></mtd><mtd><mrow><mi>A</mi><mi>c</mi><mi>c</mi><mi>r</mi><mi>u</mi><mi>a</mi><msub><mi>l</mi><mi>t</mi></msub><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>ϵ</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>−</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>−</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>−</mo><msubsup><mi>ϵ</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>+</mo><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mi>t</mi></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">Accrual_t=CF_{t+1}^t+\epsilon_{t+1}^t-CF_t^{t+1}-CF_t^{t-1}-\epsilon_t^{t-1}+CF_{t-1}^t \tag{8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.84444em; vertical-align: -0.15em;"></span><span class="mord mathit">A</span><span class="mord mathit">c</span><span class="mord mathit">c</span><span class="mord mathit" style="margin-right: 0.02778em;">r</span><span class="mord mathit">u</span><span class="mord mathit">a</span><span class="mord"><span class="mord mathit" style="margin-right: 0.01968em;">l</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.01968em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.16944em; vertical-align: -0.305331em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">8</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
对上式整合,可重写为:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(9)</mtext></mtd><mtd><mrow><mi>A</mi><mi>c</mi><mi>c</mi><mi>r</mi><mi>u</mi><mi>a</mi><msub><mi>l</mi><mi>t</mi></msub><mo>=</mo><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>−</mo><mrow><mo fence="true">(</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>+</mo><mi>C</mi><msubsup><mi>F</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo fence="true">)</mo></mrow><mo>+</mo><mi>C</mi><msubsup><mi>F</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>ϵ</mi><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>−</mo><msubsup><mi>ϵ</mi><mi>t</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">Accrual_t=CF_{t-1}^t-\left(CF_t^{t+1}+CF_t^{t-1}\right)+CF_{t+1}^t+\epsilon_{t+1}^t -\epsilon_t^{t-1}\tag{9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.84444em; vertical-align: -0.15em;"></span><span class="mord mathit">A</span><span class="mord mathit">c</span><span class="mord mathit">c</span><span class="mord mathit" style="margin-right: 0.02778em;">r</span><span class="mord mathit">u</span><span class="mord mathit">a</span><span class="mord"><span class="mord mathit" style="margin-right: 0.01968em;">l</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.01968em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.21412em; vertical-align: -0.35001em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size1">(</span></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.14889em; vertical-align: -0.305331em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.843556em;"><span class="" style="top: -2.453em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.305331em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1.11111em; vertical-align: -0.247em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.864108em;"><span class="" style="top: -2.453em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">t</span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 1.21412em; vertical-align: -0.35001em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">9</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
根据式(9)我们可以写出盈余管理计量模型:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(10)</mtext></mtd><mtd><mrow><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>W</mi><mi>C</mi><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi></mrow></msub></mrow><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mfrac><mo>=</mo><msub><mi>β</mi><mn>0</mn></msub><mfrac><mn>1</mn><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>=</mo><mn>1</mn></mrow></msub></mfrac><mo>+</mo><msub><mi>β</mi><mn>1</mn></msub><mfrac><mrow><mi>C</mi><mi>F</mi><msub><mi>O</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mfrac><mo>+</mo><msub><mi>β</mi><mn>2</mn></msub><mfrac><mrow><mi>C</mi><mi>F</mi><msub><mi>O</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi></mrow></msub></mrow><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mfrac><mo>+</mo><msub><mi>β</mi><mn>3</mn></msub><mfrac><mrow><mi>C</mi><mi>F</mi><msub><mi>O</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mfrac><mo>+</mo><msub><mi>ϵ</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi></mrow></msub></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">\frac{\Delta WCA_{i,t}}{A_{i,t-1}}=\beta_0 \frac{1}{A_{i,t=1}}+\beta_1 \frac{CFO_{i,t-1}}{A_{i,t-1}}+\beta_2 \frac{CFO_{i,t}}{A_{i,t-1}}+\beta_3 \frac{CFO_{i,t+1}}{A_{i,t-1}}+\epsilon_{i,t} \tag{10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 2.33244em; vertical-align: -0.972108em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.36033em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathit" style="margin-right: 0.13889em;">W</span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.972108em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 2.29355em; vertical-align: -0.972108em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.05278em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.32144em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.972108em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 2.33244em; vertical-align: -0.972108em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.05278em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.36033em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="mord"><span class="mord mathit" style="margin-right: 0.02778em;">O</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.02778em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.972108em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 2.33244em; vertical-align: -0.972108em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.05278em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.36033em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="mord"><span class="mord mathit" style="margin-right: 0.02778em;">O</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.02778em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.972108em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 2.33244em; vertical-align: -0.972108em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.05278em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.36033em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="mord"><span class="mord mathit" style="margin-right: 0.02778em;">O</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.02778em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.972108em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span class="mord mathit">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 2.33244em; vertical-align: -0.972108em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">0</span></span><span class="mord">)</span></span></span></span></span></span></span><br>
由于DD模型主要聚焦于流动性应计(营运资金应计),非流动性应计还包括固定资产折旧、无形资产和递延资产的摊销等,因此,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>W</mi><mi>C</mi><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\Delta WCA_{i,t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.969438em; vertical-align: -0.286108em;"></span><span class="mord">Δ</span><span class="mord mathit" style="margin-right: 0.13889em;">W</span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span>为营运资金变动额,营运资金=应收账款+存货-应付账款-应付税款+其他流动资产。<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>F</mi><mi>O</mi></mrow><annotation encoding="application/x-tex">CFO</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.68333em; vertical-align: 0em;"></span><span class="mord mathit" style="margin-right: 0.07153em;">C</span><span class="mord mathit" style="margin-right: 0.13889em;">F</span><span class="mord mathit" style="margin-right: 0.02778em;">O</span></span></span></span></span>为经营活动现金流净额。同时各变量都用上一期资产总计<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>A</mi><mrow><mi>i</mi><mo separator="true">,</mo><mi>t</mi></mrow></msub></mrow><annotation encoding="application/x-tex">A_{i,t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.969438em; vertical-align: -0.286108em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mpunct mtight">,</span><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span>进行调整。式(10)回归结果的残差表示流动性应计中的操控性应计。</p>
<h1 id="stata测算过程">stata测算过程</h1>
<h2 id="测算说明:">测算说明:</h2>
<p>剔除金融行业,按研究目的选择是否需要剔除特别处理企业(ST PT等),按研究目的选择相应的市场组合(沪市A、深市A、科创板、创业板、北证A等),剔除信息缺失的样本。按2012年证监会行业分类代码,制造业保留两位代码,其它行业保留一位代码,删除各年观测值小于10的行业。对清洗完的数据按年-行业分组进行回归。</p>
<h1 id="参考文献">参考文献</h1>
<p>[1]Dechow, P. M., & Dichev, I. D. (2002). The Quality of Accruals and Earnings: The Role of Accrual Estimation Errors. <em>The Accounting Review</em>, <em>77</em>, 35–59.</p>
<p>[2]龚启辉,李辰,吴联生.投资银行-审计师业务关联与IPO盈余管理[J].会计研究,2021(09):106-119.</p>
<p>[3]吕梦,王兵,苏文兵.审计委员会与审计总监任期重叠影响公司盈余质量吗[J].会计研究,2021(01):155-166.</p>
<p>[4]李增福,骆展聪,杜玲,汤旭东.“信息机制”还是“成本机制”?——大数据税收征管何以提高了企业盈余质量[J].会计研究,2021(07):56-68.</p>
<p>[5]戴泽伟,潘松剑.僵尸企业的“病毒”会传染吗?——基于财务信息透明度的证据[J].财经研究,2018,44(12):138-150.</p>
</div>
</div>