全部版块 我的主页
论坛 经济学论坛 三区 博弈论
2367 2
2011-09-14
正在准备学校的考试,有一题很有疑惑,拿出来请教一下各位高人:

Consider Bertrand's oligopoly game (the case of homogenous goods) when the cost and demand functions are as discussed in the class and there are n firms, with n>=3. Show tat the set of Nash Equlibria is the set of profiles (p1,...,pn) of prices for which pi>=c for all i and ar least two prices are equal to c.

目前已知的是:
对于Homogenous good其Betrand函数为
Demand i (pi,pj)= Demand (pi) = a - pi          if pi<pj
                            Demand (pi)/2                   if pi=pj
                             0                                       if pi>pj
请问如何求证题目中得:至少存在两个企业的价格等于c?
谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-9-16 03:52:16
1. obviously any pi<c cannot be optimal, so it must be pi>=c for all i
2. suppose pi>c for all i, any i can unilateral deviate to pi=min pj (j=/=i) -epsilon , for small epsilon >0, i will be able to capture all the profit in the market, hence pi>c for all i is not a NE . Because of 2, in any NE, there must be an i with pi=c.
3. if pj>c for all j=/=i, and pi=c, i can unilaterally deviate to set pi=min pj (j=/=i) -epsilon , for small epsilon >0, to increase his profit from 0 to strictly positive amount. Deviation is profitable, so this is not a NE. Because of this, in any NE, there must be at least two firms charging c, and pi>=c for any other i
4. lastly prove the stated strategy profile is a NE....
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-9-20 06:45:10
vesperw 发表于 2011-9-15 20:52
1. obviously any pi=c for all i
2. suppose pi>c for all i, any i can unilateral deviate to pi=min p ...
多謝解答! 很詳細,很有邏輯!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群