详细报错为7: h(simpleError(msg, call))
6: .handleSimpleError(function (cond)
.Internal(C_tryCatchHelper(addr, 1L, cond)), "非整合参数",
base::quote(y %*% rep(1, nc)))
5: drop(y %*% rep(1, nc))
4: lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs,
nvars, jd, vp, cl, ne, nx, nlam, flmin, ulam, thresh, isd,
intr, vnames, maxit, kopt, family, pb)
3: glmnet(x, y, weights = weights, offset = offset, lambda = lambda,
trace.it = trace.it, ...)
2: cv.glmnet.raw(x, y, weights, offset, lambda, type.measure, nfolds,
foldid, alignment, grouped, keep, parallel, trace.it, glmnet.call,
cv.call, ...)
1: cv.glmnet(x = as.matrix(bpmVars.imp.6_12[, c(1:k, (k * 2 + 1):(k *
2 + numCovar))]), y = bpmVars.imp.6_12[, (k + i)], nfolds = 10,
family = "binomial", alpha = 1, standardize = TRUE, parallel = TRUE)
> traceback()
7: h(simpleError(msg, call))
6: .handleSimpleError(function (cond)
.Internal(C_tryCatchHelper(addr, 1L, cond)), "非整合参数",
base::quote(y %*% rep(1, nc)))
5: drop(y %*% rep(1, nc))
4: lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs,
nvars, jd, vp, cl, ne, nx, nlam, flmin, ulam, thresh, isd,
intr, vnames, maxit, kopt, family, pb)
3: glmnet(x, y, weights = weights, offset = offset, lambda = lambda,
trace.it = trace.it, ...)
2: cv.glmnet.raw(x, y, weights, offset, lambda, type.measure, nfolds,
foldid, alignment, grouped, keep, parallel, trace.it, glmnet.call,
cv.call, ...)
1: cv.glmnet(x = as.matrix(bpmVars.imp.6_12[, c(1:k, (k * 2 + 1):(k *
2 + numCovar))]), y = bpmVars.imp.6_12[, (k + i)], nfolds = 10,
family = "binomial", alpha = 1, standardize = TRUE, parallel = TRUE)