基于GEP的支持向量机参数优化Parameter Optimization Algorithm for SVM Based on Gene Expression Programming MethodDOI:
摘要:支持向量机(SVM)具有优良的学习能力和推广能力,然而其性能依赖于参数的选取.本文对影响模型分类能力的相关参数(C、σ2)进行了研究,提出了一种基于基因表达式编程((Gene Expression Programming,GEP)的支持向量机参数选择算法,即根据参数在分类器中的作用,利用GEP优化参数的两种编码方案分别对C与σ2进行编码,期望改进支持向量机的分类精度和泛化能力.最后实验表明了本文算法的有效性.