摘要:首先介绍了基于统计学习理论的一种新的机器学习技术—支持向量机(Support Vector Machine,SVM),并针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的混沌优化(Chaos Optirnization)技术应用到支持向量机惩罚函数和核函数参数的优化,提出了混沌优化支持向量机(Chaos Optimization Support Vector Machine,COSVM)方法.根据丰满大坝1997-2004年的实际监测数据,建立了混沌优化支持向量机大坝安全监控预测模型,进行了与统计回归模型和BP
神经网络模型的分析比较,结果表明,COSVM模型具有更高的预测精度,同时在较长时段的预测中,COSVM模型也表现出更好的泛化推广性能.
原文链接:http://www.cqvip.com//QK/95142B/200701/23929014.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)