全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
24431 27
2011-10-10
怎么理解MWG里的拟凹函数,为什么偏好的凸姓意味着u(.)是拟凹的呢,求解释
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-10-11 22:38:19
推导出来的。。。拟凹效用函数,意味这边际替代率递减
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-12 22:49:12
经济学方面:集合、关系(等价、传递等)、全序、前序、凸凹、拟凸(凹)。了解度量空间的部分知识。了解拟凹函数、凹函数和微分学知识,部分线性代数知识。这些知识将很好地帮助您了解高级微观经济学的内容,尤其是效用存在性定理的证明、对一般均衡的理解等等。如果要研究经济个体最优行为这些知识就显得尤为必要。   所谓拟凹函数,就是相对坐标横轴,图像里没有下凸现象的曲线。亦即对任意两点x、y属于定义域,f(ax+(1-a)y)>=min[f(x), f(y)]。容易证明,若函数是拟凹的,当且仅当其定义域的所有上轮廓集(upper contour set)都是凸的。对于效用函数来说,偏好是凸的,当且仅当效用函数是拟凹的。   至于他的意义,其实就是讨论为什么偏好一定要假定为凸的,偏好的凸性往往被解释为偏好是边际替代率是递减的(注意:是边际替代率递减,而非边际效用递减!)。从直觉上解释这种现象,就好比一个人,买苹果和桔子,他觉得1个苹果三个桔子比一个桔子三个苹果好,那么这两种消费结构直线上的点两个苹果两个桔子,也必定比一个桔子三个苹果好。这是一个二维的情况。一维则更清楚了,三个苹果如果比一个苹果好,那么两个苹果一定也比一个苹果好。随着维数增加,这个规律也是比较合理的。   另外,优化问题中把偏好假设为是凸的,再加上局部非饱和性质,使得对于任意的预算约束下,总有最大效用消费的解。否则,谈优化是没有任何意义的。
编辑本段严格拟凹函数
  [定义]严格拟凹函数:f:D→R是严格拟凹函数,当且仅当,对于所有的x1,x2∈D,都有 f(tx1+(1-t)x2)>min{f(x1), f(x2)} ,对于所有的t∈(0,1) 。由定义易知,所有单调一元函数能被认为是此类函数。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-13 08:41:49
拟凹函数,学习一下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-13 23:30:41
附一片关于拟凹函数的文章,共同进步吧
附件列表

3_凹函数与拟凹函数.pdf

大小:454.96 KB

 马上下载

拟凹函数的详细解释

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-15 09:12:17
已看,受用!!!谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群