Graduate - Courant
G63.1410.001, 1420.001 INTRODUCTION TO MATHEMATICAL ANALYSIS I, II
Fall term
Functions of one variable: rigorous treatment of limits and continuity. Derivatives. Riemann integral. Taylor series. Convergence of infinite series and integrals. Absolute and uniform convergence. Infinite series of functions. Fourier series.
Spring term
Functions of several variables and their derivatives. Topology of Euclidean spaces. The implicit function theorem, optimization and Lagrange multipliers. Line integrals, multiple integrals, theorems of Gauss, Stokes, and Green. 
G63.2450.001, 2460.001 COMPLEX VARIABLES I, II
Fall Term
Complex numbers; analytic functions, Cauchy-Riemann equations; linear fractional transformations; construction and geometry of the elementary functions; Green's theorem, Cauchy's theorem; Jordan curve theorem, Cauchy's formula; Taylor's theorem, Laurent expansion; analytic continuation; isolated singularities, Liouville's theorem; Abel's convergence theorem and the Poisson integral formula.
Text: Introduction to Complex Variables and Applications, Brown & Churchill
Spring Term
The fundamental theorem of algebra, the argument principle; calculus of residues, Fourier transform; the Gamma and Zeta functions, product expansions; Schwarz principle of reflection and Schwarz-Christoffel transformation; elliptic functions, Riemann surfaces; conformal mapping and univalent functions; maximum principle and Schwarz's lemma; the Riemann mapping theorem.}
Text: Complex Analysis, Alfors 
G63.2470.001 ORDINARY DIFFERENTIAL EQUATIONS
Existence theorem: finite differences; power series. Uniqueness. Linear systems: stability, resonance. Linearized systems: behavior in the neighborhood of fixed points. Linear systems with periodic coefficients. Linear analytic equations in the complex domain: Bessel and hypergeometric equations.
Recommended text: Ordinary Differential Equations, Coddington & Levinson 
G63.2490.001 PARTIAL DIFFERENTIAL EQUATIONS (one-term format)
Basic constant-coefficient linear examples: Laplace's equation, the heat equation, and the wave equation, analyzed from many viewpoints including solution formulas, maximum principles, and energy inequalities. Key nonlinear examples such as scalar conservation laws, Hamilton-Jacobi equations, and semilinear elliptic equations, analyzed using appropriate tools including the method of characteristics, variational principles, and viscosity solutions. Simple numerical schemes: finite differences and finite elements. Important PDE from mathematical physics, including the Euler and Navier-Stokes equations for incompressible flow.
Suggested texts: Partial Differential Equations, Paul R. Garabedian, AMS; Partial Differential Equations, L. C. Evans, AMS; Partial Differential Equations, Fritz John, Springer 
G63.2550.001 FUNCTIONAL ANALYSIS
The course will concentrate on concrete aspects of the subject and on the spaces most commonly used in practice such as Lp(1? p ? ?), C, C?, and their duals. Working knowledge of Lebesgue measure and integral is expected. Special attention to Hilbert space (L2, Hardy spaces, Sobolev spaces, etc.), to the general spectral theorem there, and to its application to ordinary and partial differential equations. Fourier series and integrals in that setting. Compact operators and Fredholm determinants with an application or two. Introduction to measure/volume in infinite-dimensional spaces (Brownian motion). Some indications about non-linear analysis in an infinite-dimensional setting. General theme: How does ordinary linear algebra and calculus extend to d=? dimensions?
Mandatory text: Functional Analysis, P. Lax, (Pure & Applied Mathematics, New York), Wiley-Interscience, John Wiley & Sons, 2002
Rec. text: Methods of Modern Mathematical physics Vol. I: Functional Analysis, M. Reed & B. Simon, Academic Press, New York-London, 1972 
G63.2012.002 ADVANCED TOPICS IN NUMERICAL ANALYSIS (Numerical Methods with Probability)
A continuation of Numerical Methods I, introducing statistical and scientific applications of numerical linear algebra (including randomized algorithms), digital signal processing (including stochastic processes), spectral and adaptive schemes for numerical integration, Monte-Carlo techniques (including Metropolis' and Hastings'), the enhancement of accuracy via postprocessing, and other fundamentals. The focus is on basic methods for solving problems encountered frequently in modern science and technology.
Cross-listed as G22.2945.002 
G63.2902.001 STOCHASTIC CALCULUS
Review of basic probability and useful tools. Bernoulli trials and random walk. Law of large numbers and central limit theorem. Conditional expectation and martingales. Brownian motion and its simplest properties. Diffusion in general: forward and backward Kolmogorov equations, stochastic differential equations and the Ito calculus. Feynman-Kac and Cameron-Martin Formulas. Applications as time permits.
Text: Stochastic Calculus, A Practical Introduction, Richard Durrett, CRC Press, Probability & Stochastics Series 
G63.2911.001, 2912.001 PROBABILITY: LIMIT THEOREMS I, II
 Newman, (fall);  H. McKean (spring).
Fall term
Probability, independence, laws of large numbers, limit theorems including the central limit theorem. Markov chains (discrete time). Martingales, Doob inequality, and martingale convergence theorems. Ergodic theorem.
Spring term
Independent increment processes, including Poisson processes and Brownian motion. Markov chains (continuous time). Stochastic differential equations and diffusions, Markov processes, semigroups,
generators and connection with partial differential equations.
Spring text: Stochastic Processes, S. R. S. Varadhan, CIMS - AMS, 2007 
G63.2931.001 ADVANCED TOPICS IN PROBABILITY (Markov Processes and Diffusions).
In the first part of the course, we will give an introduction to the general theory of Markov processes for both discrete and continuous time. Our main focus will be the study of their long-time behavior (transience, recurrence, ergodicity, mixing) in the classical context of Harris chains, but also for a larger class of processes that doesn't fit into this context. The second part of the course will be aimed at applying the abstract results from the first part to the more concrete framework of elliptic diffusion processes. Lyapunov function techniques will play a prominent role in this part of the course. The final part of the course will be an introduction to the theory of hypoelliptic diffusion processes. We will give a short introduction to Mallivain calculus and use it to give a probabilistic proof of Hörmander's famous "sums of squares" theorem.
Recommended texts: Markov Chains and Stochastic Stability, Meyn and Tweedie (available online at 
http://www.probability.ca/MT/); Introduction to the Theory of Diffusion Processes, Krylov; The Malliavin Calculus and Related Topics, Nualart 
G63.2932.001 ADVANCED TOPICS IN PROBABILITY (Large Deviations and Applications)
Varadhan
Prerequisites: Probability: Limit Theorems I and II; familiarity with some Markov Processes, Brownian motion, SDE, diffusions.
Standard Cramer Theory for sums of iid random variables, Ventcel Freidlin theory for ordinary differential equations with small noise and the exit problem. Donsker-Varadhan theory of large time behavior of Markov Processes. Applications to interacting particle systems.
Recommended Texts on Large Deviations: Dembo & Zeitouni, Deuschel & Stroock, Weiss & Schwartz
Graduate - Computational Biology
G36.2011 Advanced Topics in Numerical Analysis: High Performance Scientific Computing.
Topics: Serial and parallel performance tuning, parallel programing in MPI and OpenMP. 
Graduate - GSAS
G63.2044 Monte Carlo Methods and Simulation of Physical Systems 
Principles of Monte Carlo: sampling methods and statistics, importance sampling and variance reduction, Markov chains and the Metropolis algorithm. Advanced topics such as acceleration strategies, data analysis, and quantum Monte Carlo and the fermion problem. 
G63.2830, 2840 Advanced Topics in Applied Mathematics 
Recent topics: mathematical models of crystal growth; math adventures in data mining; ice dymamics; vortex dynamics; applied stochastic analysis; developments in statistical learning; fluctuation dissipation theorems and climate change; theory and modeling of rare events.