这是在建构gmm instrument时用到的参数
为保险起见都会取大范围
譬如底下例子:
2:8 与 2:99的结果是相同的
这时的matrix 是 28 x 6
而2:7时,与 2:99的结果就不相同
这时的matrix 是 27 x 6
详见plm.pdf page 31/65
#########
y~lag(y, 1:2)+lag(x1, 0:1)+lag(x2, 0:2) | lag(y, 2:99)
is similar to y~lag(y,1:2)+lag(x1, 0:1)+lag(x2, 0:2) |
lag(y, 2:99) | lag(x1, 0:1)+lag(x2,0:2)
and indicates that all lags from 2 of y is used as gmm instruments.
The first right-hand side part describe the covariates.
The second one, which is mandatory, describes the gmm instruments.
The third one, which is optionnal,describes the ’normal’ instruments.
By default, all the variables of the model which are not used as
GMM instruments are used as normal instruments with the same lag
structure as the one specified in the model.
############
library(plm)
data("EmplUK", package = "plm")
z7 <- pgmm(log(emp) ~ lag(log(emp), 1)+ lag(log(wage), 0:1) +
lag(log(capital), 0:1) | lag(log(emp), 2:7) +
lag(log(wage), 2:7) + lag(log(capital), 2:7),
data = EmplUK, effect = "twoways", model = "onestep",
transformation = "ld")
summary(z7)
Coefficients
Estimate Std. Error z-value Pr(>|z|)
lag(log(emp), 1) 0.936845 0.016543 56.6313 < 2.2e-16 ***
lag(log(wage), 0:1)0 -0.627037 0.069777 -8.9863 < 2.2e-16 ***
lag(log(wage), 0:1)1 0.479968 0.063831 7.5193 5.506e-14 ***
lag(log(capital), 0:1)0 0.478242 0.045499 10.5110 < 2.2e-16 ***
lag(log(capital), 0:1)1 -0.419226 0.047809 -8.7687 < 2.2e-16 ***
###########
z8 <- pgmm(log(emp) ~ lag(log(emp), 1)+ lag(log(wage), 0:1) +
lag(log(capital), 0:1) | lag(log(emp), 2:8) +
lag(log(wage), 2:8) + lag(log(capital), 2:8),
data = EmplUK, effect = "twoways", model = "onestep",
transformation = "ld")
summary(z8)
Coefficients
Estimate Std. Error z-value Pr(>|z|)
lag(log(emp), 1) 0.935605 0.016302 57.3931 < 2.2e-16 ***
lag(log(wage), 0:1)0 -0.630976 0.069328 -9.1013 < 2.2e-16 ***
lag(log(wage), 0:1)1 0.482620 0.063722 7.5739 3.623e-14 ***
lag(log(capital), 0:1)0 0.483930 0.044933 10.7701 < 2.2e-16 ***
lag(log(capital), 0:1)1 -0.424393 0.047422 -8.9492 < 2.2e-16 ***
###########
z99 <- pgmm(log(emp) ~ lag(log(emp), 1)+ lag(log(wage), 0:1) +
lag(log(capital), 0:1) | lag(log(emp), 2:99) +
lag(log(wage), 2:99) + lag(log(capital), 2:99),
data = EmplUK, effect = "twoways", model = "onestep",
transformation = "ld")
summary(z99)
Coefficients
Estimate Std. Error z-value Pr(>|z|)
lag(log(emp), 1) 0.935605 0.016302 57.3931 < 2.2e-16 ***
lag(log(wage), 0:1)0 -0.630976 0.069328 -9.1013 < 2.2e-16 ***
lag(log(wage), 0:1)1 0.482620 0.063722 7.5739 3.623e-14 ***
lag(log(capital), 0:1)0 0.483930 0.044933 10.7701 < 2.2e-16 ***
lag(log(capital), 0:1)1 -0.424393 0.047422 -8.9492 < 2.2e-16 ***