全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
6559 6
2006-12-04
stata标定的标定结果为: 用stata标定离散选择模型
为什么没有按选择方案给出参数,数据表中的参数是什么意思啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2006-12-5 08:11:00
The Coefficients in the table are logit coefficients, i.e. log(odds). Use the command "listcoef", you will get the odds.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-12-5 08:15:00

我看你还是先找一本stata的书仔细看看把,比如陈峰的现代医学统计与stata应用,论坛上有。

一些基本的东西你应该了解的。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-12-5 23:16:00

coef with nlogit command

以下是引用woodhaven在2006-12-5 8:11:00的发言:
The Coefficients in the table are logit coefficients, i.e. log(odds). Use the command "listcoef", you will get the odds.

I know how to get the odds after mlogit command. Actually, my question is I cant understand the output (what does the column "coef" meab)after nlogit command and dont know how to get the odds in an NL model (since listcoef doesnt work with models estimated with nlogit ).

Thank you so much for your reply and hope to get your help for the questions mentioned above. Thanks.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-12-7 11:48:00

Check this link http://www.ats.ucla.edu/stat/stata/examples/greene/greene19.htm

Then go to Greene's book(pay attention to the Version difference), and find the chapter Models with Discrete Dependent Variable. The result table in the books should be the same as the Stata output from the link above.

Since the nested logit model is within the multinomial logit framework, the calculation of odds should be the same. Expoentiating the logit coefficients gives you the odds.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-12-7 14:03:00

再问woodhaven

以下是引用woodhaven在2006-12-7 11:48:00的发言:

Check this link http://www.ats.ucla.edu/stat/stata/examples/greene/greene19.htm

Then go to Greene's book(pay attention to the Version difference), and find the chapter Models with Discrete Dependent Variable. The result table in the books should be the same as the Stata output from the link above.

Since the nested logit model is within the multinomial logit framework, the calculation of odds should be the same. Expoentiating the logit coefficients gives you the odds.

楼主帮忙帮到底,我们就拿拿Greene的例子来说吧

nlogit mode (travel = aasc tasc basc gc ttme) (type=hincair), group(grp)
tree structure specified for the nested logit model

top-->bottom

type travel
------------------------
fly air
ground train
bus
car

initial: log likelihood = -207.01917
rescale: log likelihood = -207.01917
rescale eq: log likelihood = -197.65917
Iteration 0: log likelihood = -197.65917
Iteration 1: log likelihood = -197.43396 (backed up)
Iteration 2: log likelihood = -197.18788 (backed up)
Iteration 3: log likelihood = -197.17125 (backed up)
Iteration 4: log likelihood = -197.08544 (backed up)
Iteration 5: log likelihood = -196.84835
Iteration 6: log likelihood = -196.30583
Iteration 7: log likelihood = -194.93294
Iteration 8: log likelihood = -194.86168
Iteration 9: log likelihood = -194.0501
Iteration 10: log likelihood = -193.91879
Iteration 11: log likelihood = -193.75031
Iteration 12: log likelihood = -193.68313
Iteration 13: log likelihood = -193.66092
Iteration 14: log likelihood = -193.65718
Iteration 15: log likelihood = -193.6562
Iteration 16: log likelihood = -193.65615
Iteration 17: log likelihood = -193.65615

Nested logit
Levels = 2 Number of obs = 840
Dependent variable = mode LR chi2(8) = 194.9313
Log likelihood = -193.65615 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
travel |
aasc| 6.042255 1.198907 5.04 0.000 3.692441 8.39207
tasc | 5.064679 .6620317 7.65 0.000 3.767121 6.362237
basc| 4.096302 .6151582 6.66 0.000 2.890614 5.30199
gc | -.0315888 .0081566 -3.87 0.000 -.0475754 -.0156022
ttme | -.1126183 .0141293 -7.97 0.000 -.1403111 -.0849254
-------------+----------------------------------------------------------------
type |
hincair | .0153337 .0093814 1.63 0.102 -.0030534 .0337209
-------------+----------------------------------------------------------------
(IV params)|
|
type |
/fly | .5859993 .1406199 4.17 0.000 .3103894 .8616092
/ground | .3889488 .1236623 3.15 0.002 .1465753 .6313224
------------------------------------------------------------------------------
LR test of homoskedasticity (iv = 1): chi2(2)= 10.94 Prob > chi2 = 0.0042

结果中给出的参数是对于哪一种选择结果的log odds呢,是air,bus,train,还是car,应该如何理解结果列表中的coef列含义,这些参数怎么用?

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群