R is a wonderful thing, indeed: in recent years this free, open-source product has become a popular toolkit for statistical analysis and programming. Two of R's limitations -- that it is single-threaded and memory-bound -- become especially troublesome in the current era of large-scale data analysis. It's possible to break past these boundaries by putting R on the parallel path. Parallel R will describe how to give R parallel muscle. Coverage will include stalwarts such as snow and multicore, and also newer techniques such as Hadoop and Amazon's cloud computing platform.
Q Ethan McCallum is a consultant, writer, and technology enthusiast, though perhaps not in that order. His work has appeared online on The O?Reilly Network and Java.net, and also in print publications such as C/C++ Users Journal, Doctor Dobb's Journal, and Linux Magazine. In his professional roles, he helps companies to make smart decisions about data and technology.
Stephen Weston has been working in high performance and parallel computing for over 25 years. He was employed at Scientific Computing Associates in the 90's, working on the Linda programming system, invented by David Gelernter. He was also a founder of Revolution Computing, leading the development of parallel computing packages for R, including nws, foreach, doSNOW, and doMC. He works at Yale University as an HPC Specialist.