<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5>Economists’Mathematical Manual</FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5>4th edition</FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMB10 size=5>
<P align=left>Contents</P></FONT><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>1. Set Theory. Relations. Functions </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Logical operators. Truth tables. Basic concepts of set theory. Cartesian products.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Relations. Different types of orderings. Zorn’s lemma. Functions. Inverse</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>functions. Finite and countable sets. Mathematical induction.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>2. Equations. Functions of one variable. Complex numbers </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . 7</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Roots of quadratic and cubic equations. Cardano’s formulas. Polynomials.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Descartes’s rule of signs. Classification of conics. Graphs of conics. Properties</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>of functions. Asymptotes. Newton’s approximation method. Tangents and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>normals. Powers, exponentials, and logarithms. Trigonometric and hyperbolic</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>functions. Complex numbers. De Moivre’s formula. Euler’s formulas. </FONT><I><FONT face=CMMI10 size=2>n</FONT></I><FONT face=CMMI10 size=2></FONT><FONT face=CMR10 size=2>th roots.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>3. Limits. Continuity. Differentiation (one variable) </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . 21</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Limits. Continuity. Uniform continuity. The intermediate value theorem.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Differentiable functions. General and special rules for differentiation. Mean</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>value theorems. L’Hˆopital’s rule. Differentials.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>4. Partial derivatives </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Partial derivatives. Young’s theorem. </FONT><I><FONT face=CMMI10 size=2>C</FONT><FONT face=CMMI7 size=1>k</FONT></I><FONT face=CMMI7 size=1></FONT><FONT face=CMR10 size=2>-functions. Chain rules. Differentials.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Slopes of level curves. The implicit function theorem. Homogeneous functions.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Euler’s theorem. Homothetic functions. Gradients and directional derivatives.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Tangent (hyper)planes. Supergradients and subgradients. Differentiability of</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>transformations. Chain rule for transformations.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>5. Elasticities. Elasticities of substitution </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . 35</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Definition. Marshall’s rule. General and special rules. Directional elasticities.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>The passus equation. Marginal rate of substitution. Elasticities of substitution.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>6. Systems of equations </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>General systems of equations. Jacobian matrices. The general implicit function</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>theorem. Degrees of freedom. The “counting rule”. Functional dependence.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>The Jacobian determinant. The inverse function theorem. Existence of local</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and global inverses. Gale–Nikaido theorems. Contraction mapping theorems.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Brouwer’s and Kakutani’s fixed point theorems. Sublattices in </FONT><FONT face=MSBM10 size=2>R</FONT><I><FONT face=CMMI7 size=1>n</FONT></I><FONT face=CMMI7 size=1></FONT><FONT face=CMR10 size=2>. Tarski’s</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>fixed point theorem. General results on linear systems of equations.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>viii</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>7. Inequalities </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Triangle inequalities. Inequalities for arithmetic, geometric, and harmonic</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>means. Bernoulli’s inequality. Inequalities of H¨older, Cauchy–Schwarz, Chebyshev,</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Minkowski, and Jensen.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>8. Series. Taylor’s formula </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Arithmetic and geometric series. Convergence of infinite series. Convergence criteria.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Absolute convergence. First- and second-order approximations. Maclaurin</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and Taylor formulas. Series expansions. Binomial coefficients. Newton’s binomial</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>formula. The multinomial formula. Summation formulas. Euler’s constant.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>9. Integration </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Indefinite integrals. General and special rules. Definite integrals. Convergence</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>of integrals. The comparison test. Leibniz’s formula. The gamma function. Stirling’s</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>formula. The beta function. The trapezoid formula. Simpson’s formula.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Multiple integrals.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>10. Difference equations </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Solutions of linear equations of first, second, and higher order. Backward and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>forward solutions. Stability for linear systems. Schur’s theorem. Matrix formulations.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Stability of first-order nonlinear equations.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>11. Differential equations </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Separable, projective, and logistic equations. Linear first-order equations. Bernoulli</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and Riccati equations. Exact equations. Integrating factors. Local and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>global existence theorems. Autonomous first-order equations. Stability. General</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>linear equations. Variation of parameters. Second-order linear equations with</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>constant coefficients. Euler’s equation. General linear equations with constant</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>coefficients. Stability of linear equations. Routh–Hurwitz’s stability conditions.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Normal systems. Linear systems. Matrix formulations. Resolvents. Local and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>global existence and uniqueness theorems. Autonomous systems. Equilibrium</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>points. Integral curves. Local and global (asymptotic) stability. Periodic solutions.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>The Poincar&acute;e–Bendixson theorem. Liapunov theorems. Hyperbolic</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>equilibrium points. Olech’s theorem. Liapunov functions. Lotka–Volterra models.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>A local saddle point theorem. Partial differential equations of the first order.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Quasilinear equations. Frobenius’s theorem.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>12. Topology in Euclidean space </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Basic concepts of point set topology. Convergence of sequences. Cauchy sequences.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Cauchy’s convergence criterion. Subsequences. Compact sets. Heine–</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Borel’s theorem. Continuous functions. Relative topology. Uniform continuity.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Pointwise and uniform convergence. Correspondences. Lower and upper hemicontinuity.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Infimum and supremum. Lim inf and lim sup.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>ix</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>13. Convexity </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Convex sets. Convex hull. Carath&acute;eodory’s theorem. Extreme points. Krein–</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Milman’s theorem. Separation theorems. Concave and convex functions.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Hessian matrices. Quasiconcave and quasiconvex functions. Bordered</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Hessians. Pseudoconcave and pseudoconvex functions.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>14. Classical optimization </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Basic definitions. The extreme value theorem. Stationary points. First-order</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>conditions. Saddle points. One-variable results. Inflection points. Second-order</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>conditions. Constrained optimization with equality constraints. Lagrange’s</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>method. Value functions and sensitivity. Properties of Lagrange multipliers.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Envelope results.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>15. Linear and nonlinear programming </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Basic definitions and results. Duality. Shadow prices. Complementary slackness.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Farkas’s lemma. Kuhn–Tucker theorems. Saddle point results. Quasiconcave</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>programming. Properties of the value function. An envelope result.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Nonnegativity conditions.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>16. Calculus of variations and optimal control theory </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . 111</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>The simplest variational problem. Euler’s equation. The Legendre condition.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Sufficient conditions. Transversality conditions. Scrap value functions. More</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>general variational problems. Control problems. The maximum principle. Mangasarian’s</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and Arrow’s sufficient conditions. Properties of the value function.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Free terminal time problems. More general terminal conditions. Scrap value</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>functions. Current value formulations. Linear quadratic problems. Infinite</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>horizon. Mixed constraints. Pure state constraints. Mixed and pure state constraints.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>17. Discrete dynamic optimization </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Dynamic programming. The value function. The fundamental equations. A</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>“control parameter free” formulation. Euler’s vector difference equation. Infinite</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>horizon. Discrete optimal control theory.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>18. Vectors in </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=MSBM10 size=2>R</FONT><I><FONT face=CMMI7 size=1>n</FONT></I><FONT face=CMMI7 size=1></FONT><B><FONT face=CMBX10 size=2>. Abstract spaces </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Linear dependence and independence. Subspaces. Bases. Scalar products. Norm</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>of a vector. The angle between two vectors. Vector spaces. Metric spaces.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Normed vector spaces. Banach spaces. Ascoli’s theorem. Schauder’s fixed point</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>theorem. Fixed points for contraction mappings. Blackwell’s sufficient conditions</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>for a contraction. Inner-product spaces. Hilbert spaces. Cauchy–Schwarz’</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and Bessel’s inequalities. Parseval’s formula.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>x</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>19. Matrices </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Special matrices. Matrix operations. Inverse matrices and their properties.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Trace. Rank. Matrix norms. Exponential matrices. Linear transformations.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Generalized inverses. Moore–Penrose inverses. Partitioning matrices. Matrices</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>with complex elements.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>20. Determinants </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>2 </FONT><I><FONT face=CMSY10 size=2>× </FONT></I><FONT face=CMSY10 size=2></FONT><FONT face=CMR10 size=2>2 and 3 </FONT><I><FONT face=CMSY10 size=2>× </FONT></I><FONT face=CMSY10 size=2></FONT><FONT face=CMR10 size=2>3 determinants. General determinants and their properties. Cofactors.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Vandermonde and other special determinants. Minors. Cramer’s rule.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>21. Eigenvalues. Quadratic forms </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Eigenvalues and eigenvectors. Diagonalization. Spectral theory. Jordan decomposition.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Schur’s lemma. Cayley–Hamilton’s theorem. Quadratic forms and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>criteria for definiteness. Singular value decomposition. Simultaneous diagonalization.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Definiteness of quadratic forms subject to linear constraints.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>22. Special matrices. Leontief systems </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Properties of idempotent, orthogonal, and permutation matrices. Nonnegative</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>matrices. Frobenius roots. Decomposable matrices. Dominant diagonal matrices.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Leontief systems. Hawkins–Simon conditions.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>23. Kronecker products and the vec operator. Differentiation of vectors</FONT></B></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>and matrices </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Definition and properties of Kronecker products. The vec operator and its properties.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Differentiation of vectors and matrices with respect to elements, vectors,</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and matrices.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>24. Comparative statics </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Equilibrium conditions. Reciprocity relations. Monotone comparative statics.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Sublattices of </FONT><FONT face=MSBM10 size=2>R</FONT><I><FONT face=CMMI7 size=1>n</FONT></I><FONT face=CMMI7 size=1></FONT><FONT face=CMR10 size=2>. Supermodularity. Increasing differences.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>25. Properties of cost and profit functions </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . 163</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Cost functions. Conditional factor demand functions. Shephard’s lemma. Profit</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>functions. Factor demand functions. Supply functions. Hotelling’s lemma.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Puu’s equation. Elasticities of substitution. Allen–Uzawa’s and Morishima’s</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>elasticities of substitution. Cobb–Douglas and CES functions. Law of the minimum,</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Diewert, and translog cost functions.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>26. Consumer theory </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Preference relations. Utility functions. Utility maximization. Indirect utility</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>functions. Consumer demand functions. Roy’s identity. Expenditure functions.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Hicksian demand functions. Cournot, Engel, and Slutsky elasticities. The Slutsky</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>equation. Equivalent and compensating variations. LES (Stone–Geary),</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>AIDS, and translog indirect utility functions. Laspeyres, Paasche, and general</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>price indices. Fisher’s ideal index.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>xi</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>27. Topics from trade theory </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>2 </FONT><I><FONT face=CMSY10 size=2>× </FONT></I><FONT face=CMSY10 size=2></FONT><FONT face=CMR10 size=2>2 factor model. No factor intensity reversal. Stolper–Samuelson’s theorem.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Heckscher–Ohlin–Samuelson’s model. Heckscher–Ohlin’s theorem.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>28. Topics from finance and growth theory </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . 177</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Compound interest. Effective rate of interest. Present value calculations. Internal</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>rate of return. Norstr&oslash;m’s rule. Continuous compounding. Solow’s growth</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>model. Ramsey’s growth model.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>29. Risk and risk aversion theory </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Absolute and relative risk aversion. Arrow–Pratt risk premium. Stochastic</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>dominance of first and second degree. Hadar–Russell’s theorem. Rothschild–</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Stiglitz’s theorem.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>30. Finance and stochastic calculus </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Capital asset pricing model. The single consumption </FONT><I><FONT face=CMMI10 size=2>β </FONT></I><FONT face=CMMI10 size=2></FONT><FONT face=CMR10 size=2>asset pricing equation.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>The Black–Scholes option pricing model. Sensitivity results. A generalized</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Black–Scholes model. Put-call parity. Correspondence between American put</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and call options. American perpetual put options. Stochastic integrals. Itˆo’s</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>formulas. A stochastic control problem. Hamilton–Jacobi–Bellman’s equation.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>31. Non-cooperative game theory </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>An </FONT><I><FONT face=CMMI10 size=2>n</FONT></I><FONT face=CMMI10 size=2></FONT><FONT face=CMR10 size=2>-person game in strategic form. Nash equilibrium. Mixed strategies.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Strictly dominated strategies. Two-person games. Zero-sum games. Symmetric</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>games. Saddle point property of the Nash equilibrium. The classical minimax</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>theorem for two-person zero-sum games. Exchangeability property. Evolutionary</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>game theory. Games of incomplete information. Dominant strategies and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Baysesian Nash equlibrium. Pure strategy Bayesian Nash equilibrium.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>32. Combinatorics </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Combinatorial results. Inclusion–exclusion principle. Pigeonhole principle.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>33. Probability and statistics </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Axioms for probability. Rules for calculating probabilities. Conditional probability.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Stochastic independence. Bayes’s rule. One-dimensional random variables.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Probability density functions. Cumulative distribution functions. Expectation.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Mean. Variance. Standard deviation. Central moments. Coefficients of skewness</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and kurtosis. Chebyshev’s and Jensen’s inequalities. Moment generating and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>characteristic functions. Two-dimensional random variables and distributions.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Covariance. Cauchy–Schwarz’s inequality. Correlation coefficient. Marginal and</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>conditional density functions. Stochastic independence. Conditional expectation</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>and variance. Iterated expectations. Transformations of stochastic variables.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Estimators. Bias. Mean square error. Probability limits. Convergence in</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>xii</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>quadratic mean. Slutsky’s theorem. Limiting distribution. Consistency. Testing.</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Power of a test. Type I and type II errors. Level of significance. Significance</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>probability (</FONT><I><FONT face=CMMI10 size=2>P</FONT></I><FONT face=CMMI10 size=2></FONT><FONT face=CMR10 size=2>-value). Weak and strong law of large numbers. Central limit theorem.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>34. Probability distributions </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Beta, binomial, binormal, chi-square, exponential, extreme value (Gumbel),</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><I><FONT face=CMMI10 size=2></FONT></I></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><I><FONT face=CMMI10 size=2>F</FONT></I><FONT face=CMMI10 size=2></FONT><FONT face=CMR10 size=2>-, gamma, geometric, hypergeometric, Laplace, logistic, lognormal, multinomial,</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>multivariate normal, negative binomial, normal, Pareto, Poisson, Student’s</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><I><FONT face=CMMI10 size=2></FONT></I></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><I><FONT face=CMMI10 size=2>t</FONT></I><FONT face=CMMI10 size=2></FONT><FONT face=CMR10 size=2>-, uniform, and Weibull distributions.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>35. Method of least squares </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207</FONT></FONT></P>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><FONT face=CMR10 size=2>Ordinary least squares. Linear regression. Multiple regression.</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>References </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211</FONT></FONT></P><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2></FONT></B></FONT>
<P align=left><FONT face=SMinionPlus-Regular color=#231f20 size=5><B><FONT face=CMBX10 size=2>Index </FONT></B><FONT face=CMBX10 size=2></FONT><FONT face=CMR10 size=2>. . . . . . . . . . . . . . . . . . . . . . .</FONT></FONT></P>
<P>[Money=10]</P>
<P>
<BR></P>
<P>[/Money]</P>