. xthausman
(Warning: xthausman is no longer a supported command; use -hausman-. For
instructions, see help hausman.)
Hausman specification test
---- Coefficients ----
| Fixed Random
lnbizhong | Effects Effects Difference
-------------+-----------------------------------------
lnchanzhi | .1255044 .1570377 -.0315333
lnziben | -.0495003 -.0614383 .0119379
jiaoyi | .0623455 .1069021 -.0445567
Test: Ho: difference in coefficients not systematic
chi2( 3) = (b-B)'[S^(-1)](b-B), S = (S_fe - S_re)
= 12.16
Prob>chi2 = 0.0069
这个应该选择FE?应该到达多少才能选择FE?谢谢了?
xtreg lngdpp lnziben lnrenli,fe
Fixed-effects (within) regression Number of obs = 339
Group variable (i): diqu Number of groups = 31
R-sq: within = 0.8299 Obs per group: min = 9
between = 0.8888 avg = 10.9
overall = 0.8632 max = 11
F(2,306) = 746.31
corr(u_i, Xb) = -0.6694 Prob > F = 0.0000
------------------------------------------------------------------------------
lngdpp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .8730654 .0338547 25.79 0.000 .8064478 .9396829
lnrenli | .9177117 .1054014 8.71 0.000 .7103084 1.125115
_cons | -1.101641 .2802304 -3.93 0.000 -1.653063 -.5502186
-------------+----------------------------------------------------------------
sigma_u | .25466526
sigma_e | .12663484
rho | .80175265 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(30, 306) = 22.85 Prob > F = 0.0000
.
. xtreg lngdpp lnziben lnrenli lnjiaoyi,fe
Fixed-effects (within) regression Number of obs = 327
Group variable (i): diqu Number of groups = 30
R-sq: within = 0.8415 Obs per group: min = 8
between = 0.8918 avg = 10.9
overall = 0.8641 max = 11
F(3,294) = 520.48
corr(u_i, Xb) = -0.7367 Prob > F = 0.0000
------------------------------------------------------------------------------
lngdpp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .8362424 .0363819 22.99 0.000 .7646405 .9078443
lnrenli | 1.288762 .1289085 10.00 0.000 1.035062 1.542462
lnjiaoyi | .0964857 .0662568 1.46 0.146 -.0339121 .2268835
_cons | -1.632522 .3699249 -4.41 0.000 -2.360558 -.9044855
-------------+----------------------------------------------------------------
sigma_u | .28110029
sigma_e | .12243756
rho | .84053586 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(29, 294) = 24.44 Prob > F = 0.0000
.
jiaoyi这个变量不显著吗?R2减少了,是不是还不显著?
xtreg lngdpp lnziben lnrenli,fe
Fixed-effects (within) regression Number of obs = 339
Group variable (i): diqu Number of groups = 31
R-sq: within = 0.8299 Obs per group: min = 9
between = 0.8888 avg = 10.9
overall = 0.8632 max = 11
F(2,306) = 746.31
corr(u_i, Xb) = -0.6694 Prob > F = 0.0000
------------------------------------------------------------------------------
lngdpp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .8730654 .0338547 25.79 0.000 .8064478 .9396829
lnrenli | .9177117 .1054014 8.71 0.000 .7103084 1.125115
_cons | -1.101641 .2802304 -3.93 0.000 -1.653063 -.5502186
-------------+----------------------------------------------------------------
sigma_u | .25466526
sigma_e | .12663484
rho | .80175265 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(30, 306) = 22.85 Prob > F = 0.0000
.
. xtreg lngdpp lnziben lnrenli lnjiaoyi,fe
Fixed-effects (within) regression Number of obs = 327
Group variable (i): diqu Number of groups = 30
R-sq: within = 0.8415 Obs per group: min = 8
between = 0.8918 avg = 10.9
overall = 0.8641 max = 11
F(3,294) = 520.48
corr(u_i, Xb) = -0.7367 Prob > F = 0.0000
------------------------------------------------------------------------------
lngdpp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .8362424 .0363819 22.99 0.000 .7646405 .9078443
lnrenli | 1.288762 .1289085 10.00 0.000 1.035062 1.542462
lnjiaoyi | .0964857 .0662568 1.46 0.146 -.0339121 .2268835
_cons | -1.632522 .3699249 -4.41 0.000 -2.360558 -.9044855
-------------+----------------------------------------------------------------
sigma_u | .28110029
sigma_e | .12243756
rho | .84053586 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(29, 294) = 24.44 Prob > F = 0.0000
.
jiaoyi这个变量不显著吗?R2减少了,是不是还不显著?
说错了,R2增加了,而jiaoyi这个变量是不是不显著?
Test: Ho: difference in coefficients not systematic
chi2( 2) = (b-B)'[S^(-1)](b-B), S = (S_fe - S_re)
= 5.27
Prob>chi2 = 0.0717
该检验选择FE、RE?(如何看临界值?)
命令“hausman p q”,其中,p为(无论原假设是否成立)一致估计量的结果,q为(当原假设成立时)有效估计量的结果。比较FE与RE时,一般p是FE估计量的结果,q是RE估计量的结果。
一般地,拒绝原假设,选择FE;未拒绝原假设,选择RE。
检验结果中的“Prob>chi2 ”表示拒绝原假设所犯的弃真错误的概率(通俗地说,该概率越小,越应该拒绝原假设)。若把显著水平定为5%,上述结果表明,不能拒绝原假设。可选择RE模型。
------------------------------------------------------------------------------
lnrenshu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnchanzhi | .56956 .0296725 19.19 0.000 .511403 .627717
lnjiaoyi | .2627388 .1285364 2.04 0.041 .0108122 .5146655
_cons | .0980925 .2668823 0.37 0.713 -.4249872 .6211723
-------------+----------------------------------------------------------------
sigma_u | .16086322
sigma_e | .06109407
rho | .87394282 (fraction of variance due to u_i)
------------------------------------------------------------------------------
lnjiaoyi的显著性水平是多少?
单参数检验的原假设是“参数的真实值为零”。“P>|z|”表示拒绝原假设所犯的弃真错误的概率。这里最好不说“lnjiaoyi的显著性水平是多少”,而说“对于事先给定的显著性水平”,通过上面的结果来判断是否拒绝原假设。
若把显著水平定在5%,则上面结果表明,可以拒绝原假设,不认为“参数的真实值为零”。通俗地说,lnjiaoyi的系数不显著为零。通常谈到的“影响显著的变量”,其实指:对于给定的显著性水平,拒绝了“该变量的系数的真实值为零”的原假设。
如果根据HAUSMAN检验选择模型不符合经济涵义呢?这时应该根据经济涵义来选择模型吗?谢谢斑竹能够回答。如果这个显著性水平往往是人为定的,如果正好是5%左右,而两个模型都有经济含义,只是回归系数大小略有不同,应该如果选择模型呢?
在加入一个解释变量后,一个模型的解释力即R2明显上升了,而这个模型又不是符合LM和HAUSMAN检验的 ,这时应该根据哪个标准来选择?
xttest0
Breusch and Pagan Lagrangian multiplier test for random effects:
lnjishu[diqu,t] = Xb + u[diqu] + e[diqu,t]
Estimated results:
| Var sd = sqrt(Var)
---------+-----------------------------
lnjishu | 2.061713 1.435867
e | .2234706 .4727268
u | 0 0
Test: Var(u) = 0
chi2(1) = 0.37
Prob > chi2 = 0.5430
. xthausman
Estimate of sigma_u = 0, random-effects estimator has degenerated to pooled
OLS and the Wald test from xthausman may not be appropriate. See [R] hausman
for a more general implementation of the Hausman test.
r(459);
这句话是什么意思?应该选择随机效应?
1、F检验,可以检验到底是pooled ols还是fixed model
2、xttest0 是检验到底是pooled ols还是random model
3、hausman是检验到底是fixed model还是random model,
其H0:是不可观测效应与X是不相关的,应采用random effect模型估计;
H1:不可观测效应与X是相关的,应采用fixed effect模型估计
如果根据HAUSMAN检验选择模型不符合经济涵义呢?这时应该根据经济涵义来选择模型吗?谢谢斑竹能够回答。如果这个显著性水平往往是人为定的,如果正好是5%左右,而两个模型都有经济含义,只是回归系数大小略有不同,应该如果选择模型呢?
在加入一个解释变量后,一个模型的解释力即R2明显上升了,而这个模型又不是符合LM和HAUSMAN检验的 ,这时应该根据哪个标准来选择?
是否符合经济含义,不是统计检验决定的。
在你建立模型以前,就应该确定那些变量是应该放入的。
那和检验无关。
xtreg lnjishu lnjingfei jiaoyi,fe
Fixed-effects (within) regression Number of obs = 23
Group variable (i): diqu Number of groups = 12
R-sq: within = 0.6373 Obs per group: min = 1
between = 0.9329 avg = 1.9
overall = 0.8944 max = 2
F(2,9) = 7.91
corr(u_i, Xb) = 0.3553 Prob > F = 0.0104
------------------------------------------------------------------------------
lnjishu | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnjingfei | .6619254 .1903613 3.48 0.007 .2312982 1.092553
jiaoyi | .899726 .6327677 1.42 0.189 -.5316939 2.331146
_cons | -.2279501 .9540045 -0.24 0.817 -2.386058 1.930158
-------------+----------------------------------------------------------------
sigma_u | .46090868
sigma_e | .447694
rho | .51454089 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(11, 9) = 0.96 Prob > F = 0.5313
. xtreg lnjishu lnjingfei jiaoyi,re
Random-effects GLS regression Number of obs = 23
Group variable (i): diqu Number of groups = 12
R-sq: within = 0.6222 Obs per group: min = 1
between = 0.9643 avg = 1.9
overall = 0.9134 max = 2
Random effects u_i ~ Gaussian Wald chi2(2) = 210.94
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
lnjishu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnjingfei | .9236558 .1024741 9.01 0.000 .7228101 1.124501
jiaoyi | .6860679 .1667696 4.11 0.000 .3592055 1.01293
_cons | -1.373571 .4579633 -3.00 0.003 -2.271162 -.4759794
-------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | .447694
rho | 0 (fraction of variance due to u_i)
------------------------------------------------------------------------------
.
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects:
lnjishu[diqu,t] = Xb + u[diqu] + e[diqu,t]
Estimated results:
| Var sd = sqrt(Var)
---------+-----------------------------
lnjishu | 2.061713 1.435867
e | .2004299 .447694
u | 0 0
Test: Var(u) = 0
chi2(1) = 0.47
Prob > chi2 = 0.4918
. xthausman
Estimate of sigma_u = 0, random-effects estimator has degenerated to pooled
OLS and the Wald test from xthausman may not be appropriate. See [R] hausman
for a more general implementation of the Hausman test.
r(459);
这种情况下应该选择FE?如果选择FE,那么回归系数不符合偶的经济学涵义。谢谢。
xthaus 拒绝执行hausman test 当矩阵没有正定解(positive definite), 因此STATA推荐常用的hausman 命令。
stata8以后hausman检验是用hausman命令
xtreg y x, fe
est store fixed
xtreg y x,re
est store random
hausman fixed
xtreg lnchanzhi lnziben lnrenshu jiaoyi,fe
Fixed-effects (within) regression Number of obs = 38
Group variable (i): diqu Number of groups = 19
R-sq: within = 0.9315 Obs per group: min = 2
between = 0.9600 avg = 2.0
overall = 0.9530 max = 2
F(3,16) = 72.51
corr(u_i, Xb) = -0.9314 Prob > F = 0.0000
------------------------------------------------------------------------------
lnchanzhi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .4143423 .1174352 3.53 0.003 .1653907 .6632939
lnrenshu | 1.646248 .4142596 3.97 0.001 .768057 2.524439
jiaoyi | -.4148017 .32936 -1.26 0.226 -1.113014 .2834102
_cons | -3.140117 1.040475 -3.02 0.008 -5.345826 -.9344083
-------------+----------------------------------------------------------------
sigma_u | .75801058
sigma_e | .11302602
rho | .97825015 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(18, 16) = 7.24 Prob > F = 0.0001
.
.
. xtreg lnchanzhi lnziben lnrenshu jiaoyi,re
Random-effects GLS regression Number of obs = 38
Group variable (i): diqu Number of groups = 19
R-sq: within = 0.8981 Obs per group: min = 2
between = 0.9707 avg = 2.0
overall = 0.9669 max = 2
Random effects u_i ~ Gaussian Wald chi2(3) = 695.96
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
lnchanzhi | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .6139068 .0849526 7.23 0.000 .4474027 .7804109
lnrenshu | .7080905 .1067483 6.63 0.000 .4988676 .9173133
jiaoyi | .1667369 .2205208 0.76 0.450 -.2654759 .5989498
_cons | -.5485092 .3959151 -1.39 0.166 -1.324488 .2274701
-------------+----------------------------------------------------------------
sigma_u | .1722379
sigma_e | .11302602
rho | .69899511 (fraction of variance due to u_i)
------------------------------------------------------------------------------
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects:
lnchanzhi[diqu,t] = Xb + u[diqu] + e[diqu,t]
Estimated results:
| Var sd = sqrt(Var)
---------+-----------------------------
lnchanzhi | 1.691057 1.300406
e | .0127749 .113026
u | .0296659 .1722379
Test: Var(u) = 0
chi2(1) = 4.29
Prob > chi2 = 0.0382
. xthausman
(Warning: xthausman is no longer a supported command; use -hausman-. For
instructions, see help hausman.)
Hausman specification test
---- Coefficients ----
| Fixed Random
lnchanzhi | Effects Effects Difference
-------------+-----------------------------------------
lnziben | .4143423 .6139068 -.1995645
lnrenshu | 1.646248 .7080905 .9381576
jiaoyi | -.4148017 .1667369 -.5815386
Test: Ho: difference in coefficients not systematic
chi2( 3) = (b-B)'[S^(-1)](b-B), S = (S_fe - S_re)
= 12.84
Prob>chi2 = 0.0050
根据检验应选择固定效应模型,但是,固定效应中的jiaoyi变量的回归系数为负,不符合经济学解释,而在随机效应中为正,正是偶需要的模型。应该怎么选择呢?谢谢。
蓝色 发表于 2007-2-8 08:17
1、F检验,可以检验到底是pooled ols还是fixed model
2、xttest0 是检验到底是pooled ols还是random model ...
扫码加好友,拉您进群



收藏
