全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 悬赏大厅 求助成功区
1200 3
2012-08-18
悬赏 30 个论坛币 已解决
John Hull在讲解B-S模型一章,在the expected return一小节中用到一个结论:“ in fact,ln[E(x)] > E[ln(x)]”,如何证明啊
附件: 您需要登录才可以下载或查看附件。没有帐号?我要注册

最佳答案

KevinOu 查看完整内容

This is an application of Jenson's Inequality, which says that the expectation of a strictly concave-down function of a random variable is smaller than the function of the expectation of the random variable. A function f is said to be strictly concave-down if for any x and y within its domain and any a between 0 and 1, f(a*x+(1-a)*y)>a*f(x)+(1-a)*f(y). Of course, the domain must be a convex set s ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-8-18 18:18:36
This is an application of Jenson's Inequality, which says that the expectation of a strictly concave-down function of a random variable is smaller than the function of the expectation of the random variable.
A function f is said to be strictly concave-down if for any x and y within its domain and any a between 0 and 1, f(a*x+(1-a)*y)>a*f(x)+(1-a)*f(y). Of course, the domain must be a convex set so that a*x+(1-a)*y falls in the domain of f.
Jenson's Inequality follows from the definition above, though not really directly. However, please note that a convex combination (the form a*u+(1-a)*v) is the expectation of a two-point distribution taking value either u or v. Expand two-point case to finitely many point case, then to countably infinitely many point case, and finally to Lebesgue integration case. Just apply definitions and note that expectation is a special integral, and Jenson's Inequality will be reached.
For this particular case, note that the function ln is strictly concave-down.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-8-18 18:45:10
简单讲,这是由凸函数的性质决定的。简单说,函数值的平均大于平均的函数值(你可以想象一个凸函数),而Ln是凸函数。
具体证明,请参阅http://en.wikipedia.org/wiki/Jensen's_inequality
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-8-18 19:06:46
谢谢两位这么及时的解答,但最佳答案只能给一人,就给KevinOu朋友,同样感谢jerryren

之前用不等式证明陷入困境,看来要补的数学还好多!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群