請問先進:
In the book John Hull Option Futures And Other Derivatives 7th,
Chapter 21 Estimating Volatilities and correlations,
Questions and Problem 21.14.
(Hint: The variables u_(n-1) is the return on the asset price in time △t, It can be assumed to be normally distributed with mean zero and standard deviation σ_(n-1). It follows that the mean of u_(n-1)^2 and u_(n-1)^4 are σ_(n-1)^2 and 〖3σ〗_(n-1)^3 respectively.)
I could derive that V(u_(n-1)) = E(u_(n-1)^2)-〖(E(u_(n-1)))〗^2
→ σ_(n-1)^2 = E(u_(n-1)^2)- 0
→ E(u_(n-1)^2) = σ_(n-1)^2 → the mean of u_(n-1)^2 is σ_(n-1)^2
But I couldn’t derive the mean of u_(n-1)^4 is 〖3σ〗_(n-1)^3.
E(u_(n-1)^4) = 〖3σ〗_(n-1)^3???
Thanks for your help!
對不起我不小心多發了兩次這個相同的帖子,不知道怎麼刪除?
可不可以教我一下,會不會被處罰?
CKyeh