TinyTL: Reduce Memory, Not Parameters
for Efficient On-Device Learning
Han Cai1 , Chuang Gan2 , Ligeng Zhu1 , Song Han1
1
Massachusetts Institute of Technology, 2 MIT-IBM Watson AI Lab
{hancai, chuangg, ligeng, songhan}@mit.edu
Abstract
Efficient on-device learning requires a small memory footprint at training time to
fit the tight memory constraint. Existing work solves this problem by reducing
...
附件列表