名称
Bayesian Data Analysis, Second Edition (Texts in Statistical Science) (Hardcover)
by Andrew Gelman (Author), John B. Carlin (Author), Hal S. Stern (Author), Donald B. Rubin (Author)
大小:696 pages,10.9MB
Publisher: Chapman & Hall/CRC; 2 edition (July 29, 2003)
Language: English
ISBN-10: 158488388X
ISBN-13: 978-1584883883
[usemoney=15][/usemoney]
目录:(下面的目录内容是OCR所得,因此有很多单词中出现了多余的空格,另外有些词识别错误。但是我认为让网友们辨别清楚这是否是他们所需要的书是毫无问题的。我所发布的djvu文件文字清晰,排版正确,没有问题。)
Contents
List o f models
List o f exam p les
P refac e
P a r t I: Fundam ent als o f B aye sian Infere n ce
1 Background
1.1 Overview
1.2 General notation for statistical inference
1.3 Bayesian inference
1.4 Example: inference about a genetic probability
1.5 Probability as a measure of uncertainty
1.6 Example of probability assignment : football point spreads
1.7 Example of probability assignment: est imat ing the accuracy
of record linkage
1.8 Some usefu l results from probability theory
1.9 Summarizing inferences by simulation
1.10 Computation and software
1.11 Bibliographic note
1.12 Exercises
2 Sin gle-parame t e r models
2.1 Estimating a probability from binomial data
2.2 Posterior distribution as compromise between data and prior
information
2.3 Summarizing posterior inference
2.4 Informat ive prior distributions
2.5 Example: estimat ing the probability of a female birth given
placenta previa
2.0 Estimating the mean of a normal distribution with known
variance
2.7 Other standard single-parameter models
2.8 Example: informative prior distribution and multilevel st ructure
for est imat ing cancer rates
vii
x v
xvii
x ix
1
3
3
4
6
9
II
14
17
22
25
27
27
29
33
33
36
37
39
43
46
49
55
viii
2.9
2.10
2.11
Noninformative prior distributions
Bibli ographic note
Exercises
CONTENTS
61
65
67
3 Introduction to multiparameter models 73
3.1 Averaging over 'nuisance parameters' 73
3.2 Normal data with a noninformative prior distribution 74
3.3 Normal data with a conjugate prior distribution 78
3.4 Normal data with a semi-conjugate prior distribution 80
3.5 The multinomial model 83
3.G The multivariate normal model 85
3.7 Example: analysis of a bioassay experiment 88
3.8 Summary of elementary modeling and computation 93
3.9 Bibliographic note 94
3.10 Exercises 95
4 Large-sample inference and frequency properties of Bayesian
inference 101
4.1 Normal approximations to t he posterior distribution 101
4.2 Large-sample theory 106
4.3 Counte rexamples to the theorems 108
4.4 Frequ ency evalua t ions of Bayesian inferences 111
4.5 Bibliographic note 113
4.6 Exercises 113
Part II: Fundamentals of Bayesian Data Analysis 115
5 Hierarchical models 11 7
5.1 Const ructing a parameterized prior distribution 118
5.2 Exchan geability and setting up hierarchical models 121
5.3 Computatio n with hierarchical models 125
5.4 Estimating an exchangeable set of parameters from a normal
model 131
5.5 Example: comhining information from educat ional test ing
experiments in eight schools 138
5.6 Hierarchical modeling applied to a meta-analysis 145
5.7 Bibliographi c note 150
5.8 Exerci ses 152
6 Model checking and improvement 157
6.1 The place of model checking in applied Bayesian statistics 157
6.2 Do the inferences from the model make sense? 158
6.3 Is t he model consistent with data? Post erior predictive
checking 159
6.4 Graphical posterior pr edictive checks 165
CONTENTS ix
6.5
6.6
6.7
6.8
6.9
6.10
Numerical post erio r predicti ve checks
Model expansion
Model comparison
Model checking for the educational tes ting example
Bibliographic note
Exercises
172
177
179
186
190
192
7 Modeling accounting for data collection 197
7.1 Int roduction UJ7
7.2 Formal models for data collect ion 200
7.3 Ignorability 203
7.4 Sample surveys 207
7.5 Designed experiments 218
7.6 Sensitivity and the role of randomization 223
7.7 Observational studies 226
7.8 Censoring and truncation 231
7.9 Discussion 236
7.10 Bibliographic note 237
7.11 Exercises 239
8 Connections and challenges 247
8.1 Bayesian interpretations of other statis tical methods 247
8.2 Challenges in Bayesian data analysis 252
8.3 Bibliographic note 255
8.4 Exercises 255
9 General advice 259
9.1 Setting up probability models 259
9.2 Posterior inference 264
9.3 Model evaluation 265
9.4 Summary 271
9.5 Bibliographic note 271
Part III: Advanced Computation 273
10 Overview of computation 275
10.1 Crude est imation by ignoring some information 276
10.2 Usc of posterior simulat ions in Bayesian data analysis 276
10.3 Practical issues 278
10.4 Exercises 282
11 P osterior simula t ion 283
11 .1 Direct simulat ion 283
11.2 Markov chain simulat ion 285
11.3 The Gibbs sampler 287
x CONT ENTS
11.4 T he Metropolis and Metropolis-Hast ings algorithms 289
n .5 Building Markov chain algorithms using the Gibbs sampler
and Metropolis algorit hm 292
11.6 Infer ence and assessing converge nce 294
11.7 Example: the hierarchical normal model 299
n.8 Effi cient Gibbs samplers 302
11 .9 Efficient Metropolis jumping rul es 305
11.IORecommended st rategy for posterior simulat ion 307
11 .11 Bibliographic note 308
11.12 Exer cises 310
12 Approximations based on posterior modes 311
12.1 Finding posterior modes 312
12.2 T he normal and rela ted mixture approximatio ns 314
12.3 Finding marginal posterior modes using EM and related
algori t hms 317
12.4 Approximating conditional and marginal pos terior densities 32'1
12.5 Example: the hierarchical normal model (continued) 325
12.6 Bibliogr aphic note 331
12.7 Exerc ises 332
13 Special topics in computation 335
13.1 Advanced techniques for Markov chain simulat ion 335
13.2 Numerical integration 340
13.3 Importan ce sampling 342
13.4 Computing normaliz ing factors 345
13.5 Bibliographic note 348
13.6 Exercises 349
Part IV: Regression Models 351
14 Introduction to regression models 353
14.1 Introduction and notation 353
14.2 Bayesian analysis of the classical regression model 355
14.3 Example: estimat ing the advantage of incumbency in U.S.
Congressional elections 359
14.4 Goals of regression analys is 367
14.5 Assembling t he matrix of explanatory variables 369
14.6 Unequal variances and cor relations 372
14.7 Models for unequ al variances 375
14.8 Including prior informa tion 382
14.9 Bibliographic note 385
14.10 Exercises 385
CONTENTS xi
15 Hierarchical linear models 389
15.1 Regression coefficients exchangea ble in hatches 390
15.2 Example: forecasting U.S. Presidentia l elections 392
15.3 General nota t ion for hierarchical linea r models 399
15.4 Computation 400
15.5 Hierarchical modeling as an alternative to selecting predictors 405
15.6 Analysis of variance 406
15.7 Bibliographic note 411
15.8 Exercises 412
16 Generalized linear models 415
16.1 Int roduct ion 4 15
16.2 Standard generalized linear model likelihoods 416
16.3 Setting up and interpret ing generalized linear models 418
16.4 Computation 421
16.5 Example: hiera rchical Poisson regression for police stops 425
16.6 Example: hierarchical logist ic regr ession for political opinions 428
16.7 Models for multinomial responses 430
16.8 Loglinea r models for mul tivaria te discre te data 433
16.9 Bib liographic note 439
16.10 Exercises 440
17 Models for robust inference 443
17.1 Int roduction 443
17.2 Overd ispcrscd versions of standard probability models 445
17.3 Post erior inference and computation 448
17.4 Robust inference and sensitivity analysis for the ed uca tional
testing example 451
17.5 Robust regress ion using Student-s errors 455
17.u Bihliographic not e 457
17.7 Exercises 458
Part V: Specific Models and Problems 461
18 Mixture models 463
18.1 Int roduction 463
18.2 Setting up mixture models 463
18.3 Computation 467
18.4 Example: reaction times and schizophrenia 468
18.5 Bibliographic note 479
19 Multivariate models 481
19.1 Linear regression with multiple outcomes 481
19.2 P r ior distributions for COVariance matrices 483
19.3 Hierarchical multivariate models 486
xii
19.4 Multivariate models for nonnor rnal data
19.5 Time series and spatia l models
19.6 Bibliographic not e
19.7 Exercises
CONTENTS
488
491
493
494 ·
20 Nonlinear models 497
20.1 Introducti on 497
20.2 Example: serial dilut ion assay 498
20.3 Example: population toxi cokinetics 504
20.4 Bibliographic note 514
20.5 Exercises 515
21 Models for missing data 517
21.1 Notation 517
21.2 Multipl e imputation 519
21.3 Missing data in th e multivariate normal and t models 523
21.4 Example: multiple imputation for a series of polls 526
21.5 Missing values with counted data 533
21.6 Example: an opinion poll in Slovenia 534
21.7 Bibliographic note 539
21.8 Exercises 540
22 Decision a nalysis 541
22.1 Bayesian decision theory in different contexts 542
22.2 Using regression predictions: incentives for telephone surveys 544
22.3 Multi stage decision maki ng: medical screening 552
22.4 Decision analysis using a hierarchical model: home radon
measurement and remediation 555
22.5 Personal vs. institutional decision analysis 567
22.6 Bib liographic note 568
22.7 Exercises 569
Appendixes 571
A Standard probability distributions 573
A.l Int rodu ction 573
A.2 Continuous distributions 573
A.3 Discrete distributions 582
A.4 Bibliograph ic note 584
B Outline of proofs of asym p t ot ic theorems 585
13 .1 Bibliographic note 589
C Example of computation in R and Bugs 591
C.I Getting started with R and Bugs 591
CONTENTS
C.2 Fi tt ing a hierarchical model in Bugs
C.3 Options in the Bugs implementation
CA Fitting a hierarchical model in R
C.5 Further comments on computat ion
C.6 Bibli ographic notc
References
Author index
Subject index
xiii
592
596
600
607
608
611
647
655
[此贴子已经被作者于2007-4-30 4:48:22编辑过]
服了,国内的同学搞书的能力不是一般的牛!!
Anyway,这本书算Bayes应用的bible了,很多Haward和Wisc的老师都积赞这本书!
多谢!!!
这是本好书,但绝非贝叶斯应用的bible。Berger的书才堪称贝叶斯圣经。