<P><FONT size=1>内容介绍:</FONT></P>
<P>Course Description:This course provides extensive hands-on experience with Enterprise Miner and covers the basic skills required to assemble analyses using the rich tool set of Enterprise Miner. It also covers concepts fundamental to understanding and successfully applying data mining methods. After completing this course, you should be able to </P>
<P>• identify business problems and determine suitable analytical methods<br>• understand the difficulties presented by massive, opportunistic data<br>• assemble analysis-flow diagrams<br>• prepare data for analysis, including partitioning data and imputing missing values<br>• train, assess, and compare regression models, neural networks, and decision trees<br>• perform cluster analysis<br>• perform association and sequence analysis.</P>
<P><FONT color=#ff3300>Prerequisites<br>Before selecting this course, you should be familiar with Microsoft Windows and Windows-based software. No previous SAS software experience is necessary</FONT></P>
<P>总共10个PPT,每章一个PPT,还有一个习题与解答Exercise Handout(58页pdf文件)</P>
<P>Table of Contents<O:P></O:P></P>
<P>Course Description.............................................................................................................. v<O:P></O:P></P>
<P>Prerequisites...................................................................................................................... vi<O:P></O:P></P>
<P>General Conventions.......................................................................................................... vii<O:P></O:P></P>
<P>Chapter 1       Introduction to Data Mining.................................................................. 1-1<O:P></O:P></P>
<P>1.1    Background............................................................................................................. 1-3<O:P></O:P></P>
<P>1.2    SEMMA............................................................................................................... 1-15<O:P></O:P></P>
<P>Chapter 2       Predictive Modeling Using Decision Trees....................................... 2-1<O:P></O:P></P>
<P>2.1    Introduction to Enterprise Miner............................................................................... 2-3<O:P></O:P></P>
<P>2.2    Modeling Issues and Data Difficulties..................................................................... 2-20<O:P></O:P></P>
<P>2.3    Introduction to Decision Trees................................................................................ 2-37<O:P></O:P></P>
<P>2.4    Building and Interpreting Decision Trees.................................................................. 2-46<O:P></O:P></P>
<P>Chapter 3       Predictive Modeling Using Regression............................................. 3-1<O:P></O:P></P>
<P>3.1    Introduction to Regression........................................................................................ 3-3<O:P></O:P></P>
<P>3.2    Regression in Enterprise Miner................................................................................. 3-8<O:P></O:P></P>
<P>Chapter 4       Variable Selection.................................................................................. 4-1<O:P></O:P></P>
<P>4.1    Variable Selection and Enterprise Miner.................................................................... 4-3<O:P></O:P></P>
<P>Chapter 5       Predictive Modeling Using Neural Networks.................................... 5-1<O:P></O:P></P>
<P>5.1    Introduction to Neural Networks............................................................................... 5-3<O:P></O:P></P>
<P>5.2    Visualizing Neural Networks.................................................................................... 5-9<O:P></O:P></P>
<P>Chapter 6       Model Evaluation and Implementation................................................ 6-1<O:P></O:P></P>
<P>6.1    Model Evaluation: Comparing Candidate Models........................................................ 6-3<O:P></O:P></P>
<P>6.2    Ensemble Models................................................................................................... 6-10<O:P></O:P></P>
<P>6.3    Model Implementation: Generating and Using Score Code........................................ 6-16<O:P></O:P></P>
<P>Chapter 7       Cluster Analysis...................................................................................... 7-1<O:P></O:P></P>
<P>7.1    K-Means Cluster Analysis........................................................................................ 7-3<O:P></O:P></P>
<P>7.2    Self-Organizing Maps............................................................................................. 7-24<O:P></O:P></P>
<P>Chapter 8       Association and Sequence Analysis.................................................... 8-1<O:P></O:P></P>
<P>8.1    Introduction to Association Analysis.......................................................................... 8-3<O:P></O:P></P>
<P>8.2    Interpretation of Association and Sequence Analysis.................................................. 8-7<O:P></O:P></P>
<P>8.3    Dissociation Analysis (Self-Study)........................................................................... 8-24<O:P></O:P></P>
<P>Appendix A     References............................................................................................. A-1<O:P></O:P></P>
<P>A.1   References............................................................................................................ A-3<O:P></O:P></P>
<P>Appendix B    Index....................................................................................................... B-1<O:P></O:P></P>
[此贴子已经被作者于2007-5-18 12:01:36编辑过]