全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
6732 16
2012-10-11
ADVANCEDSpecialized works, difficulty level unbounded above.Contents
  • Foundations (1)
  • Problem solving (1)
  • General abstract algebra (1)
  • Group theory and representations (5)
  • Ring theory (4)
  • Commutative and homological algebra (5)
  • Number theory (5)
  • Combinatorics and discrete mathematics (3)
  • Measure theory (2)
  • Probability (1)
  • Functional analysis (5)
  • Complex analysis (6)
  • Harmonic analysis (5)
  • Differential equations (4)
  • Differential topology (3)
  • Algebraic topology (7)
  • Differential geometry (6)
  • Geometric measure theory (4)
  • Algebraic geometry (5)

FoundationsMac Lane, Categories for the working mathematician

Pete Clark isn't convinced that the working mathematician needs any category theory at all, but I definitely am! Of course it depends on whether you're interested in something heavily homological, but most people will need at least the basics of adjoints and limits sometime. The book covers substantially more than that, but because examples are drawn from some advanced stuff (rings and Lie algebras appear in the first chapter) you need a fair amount of background to read it. Noteworthy is a section near the end entitled “All concepts are Kan extensions”. Most books on homological algebra will contain a brief summary of category theory, as does Jacobson's Basic algebra II; here you can find it laid out in more detail.

Problem solvingPólya/Szegö, Problems and theorems in analysis I and II

These are very old books of very good problems, mostly from analysis, with complete solutions. They're old-fashioned of course, but the polite word is “classical”; worth reading for culture, to prepare for your quals, or (important!) to see if you can still do concrete calculations after four years of brainwashing by abstraction. (Anyone want to compute the n-Hausdorff measure of S^n inR^(n+1)?)

General abstract algebraJacobson, Basic algebra II

This is perhaps the only really advanced general-algebra book; it contains chapters on categories, universal algebra, modules and module categories, classical ring theory, representations of finite groups, homological algebra, commutative algebra, advanced field theory... Readability is uniformly low (unless you really like Jacobson's prose style) and the quality (“sanity”) of the treatments varies; I'd look anywhere else for group representation theory, but as Jacobson is a ring theorist, the structure theory of rings and fields is definitive. (Not the commutative ring stuff though!) I bought it before I really knew whether it was worth having; now I'm not sure, but it's come in handy at surprising times. Of dubious use as a reference, since each chapter is woven rather tightly and he frequently refers to hard results from volume I.

Group theory and representationsAlperin/Bell, Groups and representations

If you're not into finite groups or their representations, this book contains exactly what you need to know about them. After a quick run-through of what you probably already know, it treats matrix groups (Alperin, like Artin, insists that these are the real examples of finite groups, and I agree), p-groups, composition series, and then basic representation theory via Wedderburn's structure theorem for semisimple algebras. I learned a lot from the matrix-groups chapter. The exposition is nearly as clean and clear as Rudin's, and there are many good exercises (some deliberately too hard, and none marked for difficulty).

[PC] Yep, a solid text for an intro course to group theory (at the graduate level). It's designed so that no more and no less than the entire book gets covered in Math 325, so unlike most math books, I have read this from cover to cover.

Rotman, Introduction to the theory of groups

This is a group theorist's group theory book, although it contains no representation theory at all. What I've seen of it looks good (the diagrams on the inside covers are neat, although I have no idea what they mean). But I don't like group theory that much, so I can't say more.

[BR] This was my favorite reference for Murthy's 257 class. Starting with the simplest notions of permutations, Rotman is able to construct everything you ever wanted to know about group theory. If you're just looking for a clear, readable exposition and elegant proofs of the isomorphism theorems or Sylow's theorems, this is a great place to look. And if by some random chance you have need to learn what a wreath product is, you won't need to buy a new book.

Gorenstein, Finite groups

[BB] The final word on finite groups prior to 1970. Everything is in here. Very hard reading for a non-specialist, but a good reference for a serious group-theorist. I think Glauberman has it memorized.

Humphreys, Introduction to Lie algebras and representation theory

A skinny little book which runs briskly through the basic theorems on Lie algebras and their representations. Note that it says Lie algebras, not Lie groups; there are no smooth manifolds here! There are four copies in Eckhart Library and they're always all checked out, so it must be pretty good; it helps that the alternative works (like Jacobson, Lie algebras) are all very old, thus hard to read.

Fulton/Harris, Representation theory: a first course

This is a beautifully concrete introduction to Lie groups and their representations. “First course” in Joe Harris-speak means that the book is driven largely by examination of concrete examples and their characteristics: in fact, the first quarter of the book covers representations of finite groups, as an extended “concrete example” motivating the Lie theory. Nevertheless the book is not easy reading, and you will need a lot of multilinear algebra and some readiness to fill in glossed-over details. But at the end, you will know a lot about why the more advanced general theory behaves as it does. Physicists with a high mathematics tolerance ought to check this one out.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-10-11 11:03:47
Ring theoryKaplansky, Fields and rings

Actually this is three little sheaves (coherent sheaves, even) of lecture notes, bound as a book: one on Galois theory, one on the classical structure theory of (noncommutative) rings, and one on homological dimension theory of rings. Kaplansky's exposition is classic, and for people who (like me) didn't really get Galois theory out of 259, this isn't a bad place to learn it. He has a similar volume called Lie algebras and locally compact groups, which is half structure theory of Lie algebras and half (of all things) a proof that a locally compact topological group has a unique analytic Lie group structure.

Anderson/Fuller, Rings and categories of modules

Noncommutative rings have a homological theory very different in flavor from that of commutative rings, namely the structure theory of the categories R-mod and mod-R of left and right modules. I don't really know why I bought this book, because I find the material itself pretty boring. But it's a good exposition, contains category-oriented proofs of most of the classical noncommutative ring theory (as opposed to Lam's book below), and I did use it to give a Math Club talk last year.

Morandi, Field and Galois theory

This is an exceedingly gentle but comprehensive course in field theory (a lot more material than the field-theory chapter of a general algebra text). Morandi goes very slowly, and you could probably cover most of the proofs and do them yourself; the beginning exercises are too easy, but there are some good ones too. You might not find the material interesting enough to sustain such length of presentation; if so, look at Kaplansky instead. But it's a good reference if you just need field theory to do something else with (commutative algebra, say).

Lam, A first course in noncommutative rings

This is the ring-theory book I should have gotten when I was looking at ring-theory books. Informed by a huge number of examples (many of which I never would have guessed could exist), Lam lays out a beautiful and detailed exposition of the more concrete parts of the theory of noncommutative rings as it exists today. (Some more sophisticated areas, such as the theory of central simple algebras which Jacobson treats in Basic algebra II, are left to a planned second course, now published as Lectures on rings and modules.) Lots of exercises, mostly not too hard. He avoids category-theoretic methods for the most part, which saves the book from turning into the kind of functor catalog that Anderson/Fuller sometimes becomes.

Commutative and homological algebraAtiyah/Macdonald, Introduction to commutative algebraMatsumura, Commutative ring theoryEisenbud, Commutative algebra with a view toward algebraic geometryAs Pete Clark said, these three are the standard references now, in roughly increasing order of difficulty. Atiyah/Macdonald is short, to the point, and mostly non-homological. Matsumura is the “big Rudin” of commutative algebra: a clear systematic exposition from first principles. Eisenbud is a huge, sprawling monster of a book, which includes almost everything... somewhere. All three have many good exercises, and they complement each other well. Eisenbud is the newest and the most complete reference (and, as a specific objective, includes every result used in Hartshorne's algebraic geometry book), but it can be difficult to wade through so much material to find what you want. Atiyah/Macdonald is probably the best introductory text—or try Kaplansky's book below.Kaplansky, Commutative rings

I list this one separately because it's, well, different. Like Atiyah/Macdonald, this is a small book which takes up commutative algebra from the beginning, largely without homological methods. However, the pace is much brisker, and many results are stated in somewhat idiosyncratic form, since Kaplansky resolutely avoids algebraic-geometric language. He unfortunately refers to the third part of his notes Fields and rings (above) for the homological results he does need.

Weibel, An introduction to homological algebra

Without this book I would probably have failed the second half of Kottwitz's Math 327 class. The first half is a systematic exposition of homological algebra, more modern than the standard references: the aim stated is to bring “current technology” in homological algebra to casual users from other disciplines. The second half is devoted to a group of applications, including cohomology of groups (the lifesaver in 327), Lie algebra homology and cohomology, and other stuff. It's reasonably well written and careful in notation (a very important thing in this field). Weibel also takes care not to let too much abstract nonsense go by without an example or three of what in the hell structures he might be talking about.

Number theoryWeil, Basic number theory

[PC] Um, I saw this book in the Coop, was intrigued by the title, and opened it up to a discussion of Haar measure! Not suitable for a first course in number theory, or a second course in number theory, or... It's really hard. Maybe someday I'll get to it.

[CJ] It's not that bad, just... brisk. Weil was another of the original Bourbakistes, and his approach to algebraic number theory reflects their devotion to proper foundation: to study global (algebraic number) fields, one must first study local (locally compact) fields, and to study these one begins with topology and measure, etc. I think it's a great book, but it's true you won't learn any number theory you don't already know. You'll discover that you hadn't known what you thought you knew, but now you do.

Narkiewicz, Introduction to the elementary and analytic theory of algebraic numbers

This is a huge yellow brick which looks more like a dictionary than a math book. Narkiewicz gives a careful exposition of basic algebraic number theory (in somewhat old-fashioned notation) with more emphasis on the role of (both complex and p-adic) analytic methods than usual. I used it to learn some things about character theory on the p-adics. Notable for its extensive historical notes, unsolved problems lists, and truly immense bibliography.

Silverman, The arithmetic of elliptic curves

Silverman's two books (the second is Advanced topics in the arithmetic of elliptic curves) are the standard texts in the subject, and from what I've seen they deserve it. You will need to be thoroughly comfortable with basic algebra and number theory to pick up the first one, however. If you want to learn something about elliptic curves without so much algebraic background, try Koblitz, Introduction to elliptic curves and modular forms (but brush up your complex analysis) or Cassels, Lectures on elliptic curves (and be prepared for a short book that doesn't hold your hand much).

Koblitz, p-adic numbers, p-adic analysis, and zeta functions

[PC] Interesting, and probably a good place to read up on p-adics.

[CJ] I still want to know what a zeta function really is. Koblitz is a good writer, and he'd probably tell me if I read his book...

Fröhlich/Taylor, Algebraic number theory

[PC] This is the book that I'd love to find time to read from cover to cover. It's advanced in the sense that it's definitely for would-be algebraic number theorists: they cover a lot of ground and basically pride themselves on doing stuff that the other introductory texts don't. For example, they actually talk about cubic, biquadratic and sextic number fields, and complain in their introduction that many number theorists never acquire enough technique to work with anything but quadratic fields. But in terms of prerequisites, it presupposes a solid knowledge of undergraduate algebra, including an acquaintance with modules. I'm biased because I love algebraic number theory, but this book jumped onto my shelf above all the others. There is just so much great stuff in here, and it is written about with enthusiasm and clarity. Only problem is the confusing and oppressive letters that they use for ideals; what's up with that?

[CJ] What, the lower-case Fraktur? It's the old standard (grin).


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-11 13:25:36
谢谢分享!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-11 21:44:33
Thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-12 11:23:48
peter44444xp 发表于 2012-10-11 13:25
谢谢分享!!!
还没完
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-12 11:25:06
Combinatorics and discrete mathematicsLovasz, Problems in combinatorics

[PS] You simply must include what Hungarian mathematicians consider the most important math book ever, Laszlo Lovasz's huge tome covering combinatorics from an elementary level to Ph.D. level in one book. It teaches combinatorics the way Hungarians think it should be taught, by doing lots of problems. The problems are very hard, but in the book there are separate sections for problems, hints (which are often quite helpful), and full solutions. Every budding young Hungarian combinatorist spends a year doing every problem in this book sometime before he finishes his Ph.D. As a side treat, the questions are often filled with bits of Hungarian culture, e.g. “How many ways can you pass out k forints to n friends if 1 friend only wants an even number of forints and the rest of them must get at least one?” or “Bela wants to buy flowers for his friend...” Probably the main thing wrong with this book is it's horribly expensive unless you buy it in Hungary, where it's still $60. If you can't find this book in Eckhart, then maybe it's not so important to include it. On the other hand, Babai did help write it, so it is relevant nonetheless.

[CJ] A forint is about half a cent these days.

Stanley, Enumerative combinatorics I

Combinatorics is maturing from a collection of problems knit together by ad hoc methods (or methods which appear ad hoc to non-combinatorists) into a discipline which is taught and learned systematically. Stanley's book got a rave review in the Bulletin of the AMS as the new standard reference on counting, which really means most of combinatorics; I haven't read it but I've seen it on a whole lot of grad students' shelves. Try it out if G/K/P (above) is too talky for you. The second volume is now out.

Bollobás, Modern graph theory

This recent Springer GTM is a substantial revision and expansion of Bollobás's earlier graph theory text. Although I'm not a combinatorist by any stretch of the imagination, it looks like a good book, inviting but not toy.

Measure theoryHalmos, Measure theory

This was the standard reference for at least two generations of analysts, and it probably still is, because nobody writes books entitled Measure theory any more. Basically it's an abstract analysis text with extra care paid to set-theoretic questions, regularity problems for measures, and a construction of Haar measure. It's a good book, since Paul Halmos wrote it, but it might be considered old-fashioned now. (For a more modern, emphatically measure-theoretic analysis text, check out Bruckner/Bruckner/Thomson, Real analysis.)

Federer, Geometric measure theory

Federer's book is listed here because in the last few months, to my great surprise, it has become my reference of choice for basic real analysis (replacing the first half of big Rudin). Chapter 2 (of 5) is entitled “General measure theory”, and it covers chapters 1–3 and 6–8 of big Rudin in the space of eighty pages, together with tons of additional material on group-invariant measures, covering theorems, and all the geometric measures (Hausdorff et al). The presentation is compressed to within epsilon of unreadability, but once you unravel it, it has a powerful elegance. Federer takes great care to give the limits of generality in which each result is true. There are no exercises, but reading the book is hard exercise enough. My one quibble is that even big-name theorems are referenced by number; I would far prefer “by the dominated convergence theorem” to “by 2.3.13” for the rest of the book. If you don't like reading dense books, stay far, far away from Federer, but if you want a complete, powerful reference to measure theory, give it a try.

ProbabilityFeller, Introduction to probability theory and its applications

This is the standard text. It splits into two volumes, namely probability before and after it turns into measure theory. What I've read of it is quite well written, and noteworthy for the great care with which it discusses experimental issues (the idea “what sequence of choices corresponds to what mathematical construct” can get sticky when dependence relations are complex). Some of us will need to know some probability someday, and here it is. Alternative references are Shiryaev, Probability (Springer, so cheaper and easier to get, but very Russian) and Billingsley,Probability and measure (by a UC emeritus).

Functional analysisConway, A course in functional analysis

A grad student I knew from 325 saw me leaving the bookstore with this book, and told me it was terrible, that he'd hated it at Dartmouth. I didn't believe him at the time, but now I see what he meant. As in his complex analysis book, Conway develops functional analysis slowly and carefully, without excessive generalization (locally convex spaces are a side topic) and with proofs in great detail, except for the ones he omits. This time around, though, the detail is excruciating (many functional analysis proofs consist of a mass of boring calculation surrounding one main idea) and the notation is simply awful. (The fact that Hilbert spaces are often function spaces is not an excuse to use ‘f’ to denote a general element of a Hilbert space.) The book is not without virtues, but it goes so slowly that I can't see which results are important.

Dunford/Schwartz, Linear operators

After all these years, I think Dunford/Schwartz is still the bible of functional analysis; the analysts who did all the exercises in Kelley to learn topology tried to do all the exercises in here, or at least volume 1, to learn about operators. They all failed, although one of the exercises turned into Langlands's doctoral thesis. D/S is too old to be easily read now, but worth looking at for culture.

Kadison/Ringrose, Fundamentals of the theory of operator algebras

No, I'm not turning into an operator algebraist (although I might be doing noncommutative geometry some day). The first three-fifths of volume 1 contains a much better treatment of basic functional analysis than I've seen elsewhere, certainly slanted toward operator algebras, but clearly written and interesting (a quality lacking in many functional analysis texts). The book is known for its collection of challenging exercises, which were so popular that K/R wrote up complete solutions to the two volumes and published them as volumes 3 and 4. Unfortunately volume 1 is missing from Eckhart Library.

Kreyszig, Introductory functional analysis with applications

Here is a book to look at for a lot of applications and motivation for functional analysis, without a lot of technicalities. I've only looked at it a little bit; it seems to be written more like a physics book, substituting a plausibility argument for an occasional tricky technical proof, but spending a lot of time in explanation. Try it if you have trouble seeing what's really different about the infinite-dimensional case.

Zimmer, Essential Results of Functional Analysis

[BB] It's a U of C published blue book, and is extremely concise and quickly presents most of the stuff one needs to know. It's certainly not easy—Chapter 0 presents weak derivatives—but it's a good second course.



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群