<P align=center><B >第三章</B><B ><FONT face="Times New Roman"> </FONT></B><B >生产理论</B><B ><o:p></o:p></B></P>
<P ><B >(一)单项选择题</B></P>
<P ><FONT face="Times New Roman">1.</FONT>总产量曲线的斜率是(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>总产量<FONT face="Times New Roman"> B. </FONT>平均产量<FONT face="Times New Roman"> C. </FONT>边际产量<FONT face="Times New Roman"> D. </FONT>以上都不是</P>
<P ><FONT face="Times New Roman">2.</FONT>当<FONT face="Times New Roman">TP</FONT>下降时,(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. AP<SUB>L</SUB></FONT>递减<FONT face="Times New Roman"> B. AP<SUB>L</SUB></FONT>为零</P>
<P ><FONT face="Times New Roman"> C. MP<SUB>L</SUB></FONT>为零<FONT face="Times New Roman"> D. MP<SUB>L</SUB></FONT>为负</P>
<P ><FONT face="Times New Roman">3.</FONT>当<FONT face="Times New Roman">AP<SUB>L</SUB></FONT>为正且递减时,<FONT face="Times New Roman">MP<SUB>L</SUB></FONT>是(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>递减<FONT face="Times New Roman"> B. </FONT>负的<FONT face="Times New Roman"> C. </FONT>零<FONT face="Times New Roman"> D. </FONT>以上任何一种</P>
<P ><FONT face="Times New Roman">4.</FONT>生产过程中某一可变要素的收益递减,这意味着(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>可变要素投入量的增长和产量的增长等幅变化</P>
<P ><FONT face="Times New Roman"> B. </FONT>产量的增长幅度小于可变要素投入量的增长幅度</P>
<P ><FONT face="Times New Roman"> C. </FONT>可变要素投入量的增长幅度小于产量的增长幅度</P>
<P ><FONT face="Times New Roman"> D. </FONT>产量以增长幅度大于可变要素投入量的增长幅度</P>
<P ><FONT face="Times New Roman">5. </FONT>生产的第Ⅱ阶段始于(<FONT face="Times New Roman"> </FONT>)止于(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. AP<SUB>L</SUB>=0</FONT>,<FONT face="Times New Roman">MPL=0 B. AP<SUB>L</SUB>=MP<SUB>L</SUB></FONT>,<FONT face="Times New Roman">MP<SUB>L</SUB>=0 </FONT></P>
<P ><FONT face="Times New Roman"> C. AP<SUB>L</SUB>=MP<SUB>L</SUB></FONT>,<FONT face="Times New Roman">MP<SUB>L</SUB></FONT><<FONT face="Times New Roman">0 D. AP<SUB>L</SUB></FONT>><FONT face="Times New Roman">0</FONT>,<FONT face="Times New Roman">MP<SUB>L</SUB>=0</FONT></P>
<P ><FONT face="Times New Roman">6. </FONT>等产量线上某一点的切线的斜率表示(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>边际替代率<FONT face="Times New Roman"> B. </FONT>边际技术替代率</P>
<P ><FONT face="Times New Roman"> C. </FONT>等成本线的斜率<FONT face="Times New Roman"> D. </FONT>边际报酬率</P>
<P ><FONT face="Times New Roman">7.</FONT>如果某厂商增加一单位劳动使用量能够减少三单位资本,而仍生产同样的产量,则<FONT face="Times New Roman">RTS<SUB>LK</SUB></FONT>为( )。</P>
<P ><FONT face="Times New Roman"> A. 1/3 B. <st1:chmetcnv w:st="on" UnitName="C" SourceValue="3" HasSpace="True" Negative="False" NumberType="1" TCSC="0">3 C</st1:chmetcnv>. 1 D. 6</FONT></P>
<P ><FONT face="Times New Roman">8.</FONT>下列说法中正确的是(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>生产要素的边际技术替代率递减是规模报酬递减造成的</P>
<P ><FONT face="Times New Roman"> B. </FONT>边际收益递减是规模报酬递减造成的</P>
<P ><FONT face="Times New Roman"> C. </FONT>规模报酬递减是边际收益递减规律造成的</P>
<P ><FONT face="Times New Roman"> D. </FONT>生产要素的边际技术替代率递减是边际收益递减规律造成的</P>
<P ><FONT face="Times New Roman">9.</FONT>如果等成本曲线在坐标平面上与等产量曲线相交,那么要生产等产量曲线所表示的产量水平,就应该(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>增加成本支出<FONT face="Times New Roman"> B. </FONT>不能增加成本支出</P>
<P ><FONT face="Times New Roman"> C. </FONT>减少成本支出<FONT face="Times New Roman"> D. </FONT>不减少成本支出</P>
<P ><FONT face="Times New Roman">10.</FONT>当某厂商以最小成本生产出既定产量时,该厂商(<FONT face="Times New Roman"> </FONT>)。</P>
<P ><FONT face="Times New Roman"> A. </FONT>总收益为零<FONT face="Times New Roman"> B. </FONT>一定获得最大利润</P>
<P ><FONT face="Times New Roman"> C. </FONT>一定未获得最大利润<FONT face="Times New Roman"> D. </FONT>无法确定是否获得最大利润</P>
<P ><B >(二)名词解释</B></P>
<P ><FONT face="Times New Roman">1.</FONT>边际报酬递减规律<FONT face="Times New Roman"> 2.</FONT>等产量线<FONT face="Times New Roman"> 3.</FONT>脊线<FONT face="Times New Roman"> 4.</FONT>等成本线<FONT face="Times New Roman"> 5.</FONT>边际技术替代率<FONT face="Times New Roman"> 6.</FONT>扩展线<FONT face="Times New Roman"> 7.</FONT>规模报酬</P>
<P ><B >(三)简答题</B></P>
<P ><FONT face="Times New Roman">1.</FONT>简述短期生产函数中总产量、平均产量及边际产量三者之间的关系。</P>
<P ><FONT face="Times New Roman">2.</FONT>边际报酬递减规律的内容及成因。</P>
<P ><FONT face="Times New Roman">3.</FONT>生产的三个阶段是如何划分的<FONT face="Times New Roman">?</FONT>为什么厂商只会在第二阶段上生产<FONT face="Times New Roman">?</FONT></P>
<P ><B ><FONT face="Times New Roman"> (</FONT></B><B >四<FONT face="Times New Roman">)</FONT></B><B >论述题</B></P>
<P ><FONT face="Times New Roman">1.</FONT>规模报酬变动的三种情况及其原因。</P>
<P ><FONT face="Times New Roman">2.</FONT>试述最优要素组合原则。</P>
<P ><B >(五)分析计算题</B></P>
<P ><FONT face="Times New Roman">1. </FONT>已知生产函数为<FONT face="Times New Roman">Q=f(K,L)=KL<st1:chmetcnv w:st="on" UnitName="l" SourceValue=".5" HasSpace="False" Negative="True" NumberType="1" TCSC="0">-0.5L</st1:chmetcnv><SUP>2</SUP>-0.32K<SUP>2</SUP></FONT>,若<FONT face="Times New Roman">K=10</FONT>。</P>
<P >(<FONT face="Times New Roman">1</FONT>)求<FONT face="Times New Roman">AP<SUB>L</SUB></FONT>和<FONT face="Times New Roman">MP<SUB>L</SUB></FONT>函数;</P>
<P >(<FONT face="Times New Roman">2</FONT>)求<FONT face="Times New Roman">AP<SUB>L</SUB></FONT>递减的产出范围;</P>
<P >(<FONT face="Times New Roman">3</FONT>)求<FONT face="Times New Roman">MP<SUB>L</SUB></FONT>最大时厂商雇佣的劳动。</P>
<P ><FONT face="Times New Roman">2. </FONT>已知生产函数为<FONT face="Times New Roman">Q=f(K,L)=-K<st1:chmetcnv w:st="on" UnitName="l" SourceValue="1.5" HasSpace="False" Negative="False" NumberType="1" TCSC="0"><SUP>1.5</SUP>L</st1:chmetcnv><SUP>1.5</SUP>+22KL+15K<st1:chmetcnv w:st="on" UnitName="l" SourceValue=".5" HasSpace="False" Negative="False" NumberType="1" TCSC="0"><SUP>0.5</SUP>L</st1:chmetcnv><SUP>0.5</SUP></FONT></P>
<P >(<FONT face="Times New Roman">1</FONT>)求要素<FONT face="Times New Roman">L</FONT>的边际技术替代率;</P>
<P >(<FONT face="Times New Roman">2</FONT>)若<FONT face="Times New Roman">P<SUB>K</SUB>=1</FONT>,<FONT face="Times New Roman">P<SUB>L</SUB>=4</FONT>,求生产的扩展线方程;</P>
<P >(<FONT face="Times New Roman">3</FONT>)若<FONT face="Times New Roman">P<SUB>K</SUB>=10</FONT>,<FONT face="Times New Roman">P<SUB>L</SUB>=30</FONT>,<FONT face="Times New Roman">TC=140</FONT>,求该厂商的最优生产要素组合。</P>
<P ><FONT face="Times New Roman">3. </FONT>已知某企业的生产函数为<FONT face="Times New Roman">Q=L<SUP>2/3</SUP>K<SUP>1/3</SUP></FONT>,劳动的价格<FONT face="Times New Roman">w=2</FONT>,资本的价格<FONT face="Times New Roman">r=1</FONT>。</P>
<P >(<FONT face="Times New Roman">1</FONT>)判断该生产函数的规模报酬情况。</P>
<P >(<FONT face="Times New Roman">2</FONT>)当成本<FONT face="Times New Roman">C=3000</FONT>时,企业实现最大产量时的<FONT face="Times New Roman">L</FONT>、<FONT face="Times New Roman">K</FONT>和<FONT face="Times New Roman">Q</FONT>的均衡值。</P>
<P >(<FONT face="Times New Roman">3</FONT>)当产量<FONT face="Times New Roman">Q=800</FONT>时,企业实现最小成本时的<FONT face="Times New Roman">L</FONT>、<FONT face="Times New Roman">K</FONT>和<FONT face="Times New Roman">Q</FONT>的均衡值。</P>
<P ><FONT face="Times New Roman">4.</FONT>已知生产函数为<FONT face="Times New Roman">Q=L<SUP>0.5</SUP>K<SUP>0.5</SUP></FONT>,试证明:</P>
<P ><FONT face="Times New Roman">(1)</FONT>该生产过程是规模报酬不变。</P>
<P ><FONT face="Times New Roman">(2)</FONT>受边际报酬递减规律的支配。</P>
<P ><B >习题解答</B></P>
<P ><B >(一)单项选择题</B></P>
<P ><FONT face="Times New Roman">1.C 2.D 3.D 4.B 5.B 6.B 7.B 8.D 9.C 10.D</FONT></P>
<P ><B >(五)分析计算题</B></P>
<P ><FONT face="Times New Roman">1</FONT>、解:(<FONT face="Times New Roman">2</FONT>)<FONT face="Times New Roman"> AP<SUB>L</SUB></FONT>函数在<FONT face="Times New Roman">L=8</FONT>时取得最大值,也意味着在<FONT face="Times New Roman">L</FONT>≥<FONT face="Times New Roman">8</FONT>以后,<FONT face="Times New Roman">AP<SUB>L</SUB></FONT>函数递减</P>
<P >(<FONT face="Times New Roman">3</FONT>)对于劳动的边际产量函数<FONT face="Times New Roman">MP<SUB>L</SUB>=10-L</FONT>,由于<FONT face="Times New Roman">MP<SUB>L</SUB></FONT>函数为一条负向倾斜的直线,且<FONT face="Times New Roman">L</FONT>≥<FONT face="Times New Roman">0</FONT>,所以当<FONT face="Times New Roman">L=0</FONT>时,<FONT face="Times New Roman">MP<SUB>L</SUB></FONT>有最大值<FONT face="Times New Roman">10</FONT>。</P>
<P ><FONT face="Times New Roman">2</FONT>、解:(<FONT face="Times New Roman">3</FONT>)该厂商的最优要素组合为<FONT face="Times New Roman">K=8</FONT>,<FONT face="Times New Roman">L=2</FONT>。</P>
<P ><FONT face="Times New Roman">3</FONT>、解:(<FONT face="Times New Roman">1</FONT>)该生产函数为规模报酬不变。</P>
<P >(<FONT face="Times New Roman">2</FONT>)企业成本为<FONT face="Times New Roman">3000</FONT>时,最大产量为<FONT face="Times New Roman">1000</FONT>,投入的资本和劳动数量均为<FONT face="Times New Roman">1000</FONT>单位。</P>
<P >(<FONT face="Times New Roman">3</FONT>)企业生产<FONT face="Times New Roman">800</FONT>单位产品的最小成本为<FONT face="Times New Roman">2400</FONT>,均衡要素投入量均为<FONT face="Times New Roman">800</FONT>单位。</P>
<P ><o:p><FONT face="Times New Roman"> </FONT></o:p></P>
<P> </P>