qqface123 发表于 2012-11-11 22:23 
然后注意E(X1^2)=E(X1)
我已经说得够细了,再不懂我也说不清了。。。
你說的是C那題,
我問的是E那題
VAR(N^2) = VAR[(X1+X2+X3)^2] = E[(X1+X2+X3)^2] - [E(N)]^2
根據你說X1,X2,X3是mutually exclusive,我明白 E[(X1+X2+X3)^2] = E(X1^2) + E(X2^2) + E(X3^2)
從B已知 E(N) = (1/5 +1/4 + 1/3) = 47/60,
然後 [E(N)]^2 = (1/5 +1/4 + 1/3)^2 = (47/60)^2
所以 VAR(N^2) = E(X1^2) + E(X2^2) + E(X3^2) - [E(N)]^2
VAR(N^2) = E(X1^2) + E(X2^2) + E(X3^2) - (1/5 +1/4 + 1/3)^2
然後我已知E(X^2) = x^2 * P(X=x)
根據公式,E(X1^2) = x1^2 * P(X=x1) = (1^2) * (1/5)
E(X2^2) = x2^2 * P(X=x2) = (2^2) * (1/4 - 1/5)
E(X3^2) = x3^2 * P(X=x3) = (3^2) * (1/3 - 1/4)
所以我的推算應該是
VAR(N^2) = [(1^2) * (1/5) + (2^2) * (1/4 - 1/5) + (3^2) * (1/3 - 1/4)] - (1/5 +1/4 + 1/3)^2
因為P(A1) = 1/5
P(A2) = 1/4
P(A3) = 1/3
A1被A2包含, A2被A3包含
而答案寫的是,
VAR(N^2) = [(3^2) * (1/5) + (2^2) * (1/4 - 1/5) + (1^2) * (1/3 - 1/4)] - (1/5 +1/4 + 1/3)^2
所以如果答案是對的,我應該有些concept搞錯了