全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
1416 0
2012-12-05
分享与讨论

Tom S. Clark and Drew A. Linzer (2012) Should I Use Fixed or Random Effects

Abstract:Empirical analyses in political science very commonly confront data that are grouped-multiple votes by individual legislators, multiple years in individual states, multiple conflicts during individual years, and so forth. Modeling these data presents a series of potential challenges, of which accounting for di erences across the groups is perhaps the most well-known. Two widely-used methods are the use of either "fi xed" or "random" eff ects models. However, how best to choose between these approaches remains unclear in the applied literature. We employ a series of simulation experiments to evaluate the relative performance of fixed and random e ffects estimators for varying types of datasets. We further investigate the commonly-used Hausman test, and demonstrate that it is neither a necessary nor sucient statistic for deciding between fixed and random eff ects. We summarize the results into a typology of datasets to o er practical guidance to the applied researcher.



作者在文中指出:The simulation is performed in R (R Development Core Team 2012). We estimate the random e ffects
model using the function lmer in the lme4 package (Bates, Maechler and Bolker 2011).

而在经济学科我们估计面板数据模型用的是plm程序包(Yves Croissant and Giovanni Millo,2012),关于plmlme4这两个程序包的差异之处,作者在Vignette里面也已经指出了。


plm程序包中也仍然是传统的Huasman检验,传统的Huasman检验是不适用于异方差情形的。陈强老师的书中指出,解决的方法是辅助回归或者bootstrap方法。不知有没有人编写了对应的R程序?

附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群