全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
13285 13
2012-12-14

一,序

一转眼来美国读这个Econ 的PHD已经两年了,从刚来时的懵懵懂懂与对这边PHD生活的新奇感到现在的每周7天只能休息一个晚上的Extremely Exhausted(个人时间安排不好,每学期选课老是贪多,还有可能就是我太笨了),从刚来时去开个银行账户因为英语不好都差点没开成到这个学期其中三门课做了四堂Presentation而且越做越来劲,甚至都有点Enjoy这个过程(当然口语依然是差强人意)。回头看来,时间好似过了很长,又好似所有的都是在昨天;路好像走过了很远,但又好像只是完成了美国大街上的一个Block;东西好像学了很多,但是又好像只是了解了点皮毛,离着运用自如依然有孙悟空一个筋斗云才可以完成的距离,总之真是感慨颇多。不过正是由于这样的感觉,我才有了写一个自我安慰的学习总结,算是对这两年学习生活的回顾,给自己一个一段路已经结束,需要踏上另一段征程的心理暗示。同时,希望我的学习过程以及对相关课本的个人感觉,能对已经在路上或者即将上路的兄弟姐妹们有一个帮助(怎么感觉象去法场?)。希望觉得有帮助的或者能从里面找到一点共同的经历的兄弟姐妹们对着它会心一笑,更希望与我有不同观点的人说说他们的感受,从而让别人对这个过程有着更明确的认识,以免我的愚见对别人产生负面影响,这是我最不希望看到的。好了,突然发现自己变得好罗唆,也许是英文看多了用多了的缘故,还是中文更Sharp一点在表达意思上(也可能是自己中英文水平都差)。好了,废话少说,现在开始。

二,我这个总结的用处?

第一,对自己的学习算是个回顾总结。

第二,你可以了解美国这边Econ PHD上的一些课,怎么上课这边。

第三,不论是在国内读博的同学还是要到这边来开始PHD生活的兄弟姐妹,可以把它当作一个你自己学东西的参考,这里面虽是我个人的偏颇之见,但是很多关于上课的东西我觉得还是有一定代表性的(我现在一个常青藤学校)

第四,对于来要来美读PHD的同学,我相信从我的总结里你可以找到一个带书的List,因为我推荐的大部分书都是在国内有影印版的,带过来会省下你一大笔开销,初步估计1000刀左右。自从来美后,不算我从国内带过来的那些书,我在这边为了买书已经花了1500多刀了,其中很多是国内有影印版但是当时没带来,或者影印版是最近才才出的。

三,两点声明:

第一,我这里面经常会中英文混杂,不要认为我显摆,我都习惯这样乱用了,就宽恕我吧;更不要骂我假洋鬼子,我会很不舒服,我是中国人。

第二,我个人不是很赞同花很多时间在论坛上发帖子,写Blog什么的,至少对我来说,写这种个人感想的东西都是很认真的讲自身感受,所以特别费时间,有这些精力你去多学一门课多好。当然,纯粹个人观点,仅供参考。但是对我来说,这可能是从过去两年到未来两

年内唯一的一篇个人感想了。当然,如果新的经历积累到了一定程度,我想我会再写下一篇的(谁会点我写不写呢?呵呵)。

四,个人数学,经济学等相关学科的背景

把这个加上是因为我觉得任何经验介绍以及课本推荐都是基于个人背景的,我觉得容易的东西可能别人觉得难,而相反我觉得难的东西别人可能觉得相当简单。把个人背景加上,这样希望借鉴我经验的人就可以对照着看是否我说的适合不适合,如果背景比我好,可以把难度适当加大点;如果觉得背景比我稍差点(我估计基本没有了!),可以适当的从稍微基础点的地方开始。我本科专业是管理科学与工程,学校就不说了。

我本科学的数学相当于考研的数一,Calculus一年,Linear Algebra一学期, Probability and Statistics一学期。我相信大部分经管类的学生学的数学课也都是这些,不过有的讲的深一点,有的就讲的很浅。 总的来说,Univariate Calculus 我掌握的很好,因为我很喜欢那些证明题,比如Mean-Value Theorem那一块的东西,Multivariate 部分不好,这块是国内数学教学的一大问题,拿我所在学校的数学系来说,Multivariate Calculus也是一个巨大的问题,通常大部分是计算题,不以Linear Algebra为基础将那些重要的定理进行证明,如果你看一下《Principle of Mathematical Analysis》(以下简称为Baby Rudin,他写的三本书我都会详细介绍,这是第一本),你就明白这种差距了。其他学校也应该差不多,拿北大来说,张筑生老师的《数学分析新讲》我也读过,已经非常非常好了算是,但是感觉在难度上仍旧跟《Baby Rudin》差着一些。Linear Algebra 我学的很好,基本上计算部分不是任何问题,但是跟国外这边数学系Honors Courses还是有差距的(国外这边Undergraduate课程分为两个Sequence,一个是基础的,以计算概念为主,另一个是纯理论的,一般叫做Hounors Courses,不同的地方叫法不一样可能,但都是以证明为主,修这些课的人基本都是以后要读Graduate School的)。Probability and Statistics基本是只学的基础概率,统计讲的很少。这导致我后来不得不去修大量的数理统计理论课程。纯数学的课程就是这样了,还有一些应用数学的课程,比如我本科学了一年的Operation Research,内容就是那些Linear Programming and nonlinear Programming,排队论什么的优化方法,这其实正好是数理经济学的内容,所以对我帮助挺大的。其他的主要是计算机课程,学过很多编程语言以及数据库(PASCAL,C,C++,Data Structure等等),对我现在的好处就是见了什么新软件根本不害怕,虽然不同编程语言语法不太一样,但是原理都是那样的。我本科经济学基本上没什么,只是一门微观经济学,不过那个老师课讲的非常好,所以导致了我后来的转专业考研。

我的研究生是在同一学校读的,这里是比较有远见的,开了高级微观,高级宏观,高级计量这些课程,用的教材也算是不错,算是给我们开阔了眼界,导致了我后来申请出国。微观用的《Maschollel》,自我感觉学的可以,因为那些优化工具我都还算知道;宏观用的《Romer》,一塌糊涂,因为不会动态的优化工具;计量用的《Green》,由于概率统计基础不好,导致只是死记了几个公式,根本不明白是什么回事。后来还上了动态优化,金融经济学(用的黄奇辅那本书)。这便是研究生阶段学到的经济学。这个阶段我最重要的一个决定就是去数学系选修数学课,因为老是看不懂很多课本,比如Duffie 的《Dynamic Asset Pricing》等等,基本是除了最基本的经济学书其他的都看不懂,因为里面的数学我不明白。最后实在忍受不了那种瞎猜胡蒙的感觉,我决定去数学系修课,实际只能旁听,因为我们好像没有这种外系可以到数学系修学分的机制,虽然国内有些学校比如北大是可以,但是毕竟还是太少了啊。很多想申请Econ PHD的本身读经济的同学,知道数学重要,但是却没有办法去修课来补,真是一大憾事,我相信如果可以的话,许多同学通过修数学课是可以进入更好一点甚至是 TOP的学校的。我先后在数学系听了实变函数,随机过程(不基于测度论的,因为是本科课程),泛函分析,概率论(用的复旦那本著名的教材,李贤平写的),数理统计,测度论(用的是北师大严士健 <测度与概率> <概率论基础,以及严加安老师的《测度论讲义》,还有因为这些书看不明白了,我自己读了一部分钟开莱的《A Course in Probability》)。这便是我来美学习前所有的数学经济学背景了。

五,纯数学课程科目与教材推荐

由于现在纯数学大概按照分析,几何与拓扑,代数三个大方向来分类,所以我也按照这个分类来一门一门的看,概率与数理统计我放到另外一部分来讲。

1:Analysis:

1.1:Mathematical Analysis

上面我已经说过,微积分或者数学分析在美国这边分为两个Sequences,基础的Sequence主要讲Intuition,概念以及计算,我相信大家都已经很熟。但是第二个Sequence才是精华,这个Sequence是一年的,主要教材为《Baby Rudin》,或者Strichartz的《 The Way of Analysis》,又或者Apostol 的《Mathematical Analysis》。 《Baby Rudin》最为严格,基础不好的人看起来比较枯燥,但是It deserves a year’s effort. 如果花上一年的时间讲其学好,个人认为将会受益终生,不论将来你做哪个方向。Apostol相对比较有趣点,包含了很多计算的内容,而且还包含了 Complex Analysis的简单介绍,而Strichartz则是从一种纯粹Intuition的角度出发来讲述整个Calculus体系,用词非常口语化,评价则是褒贬不一。

关于这门课的重要性,我有这么一个故事。 刚来美学习时,系里夏天就安排了一个Summer Math Camp,这种安排据我所知是几乎美国好一点的Econ PHD Program都会有的,内容就是给学生复习Calculus以及Linear Algebra的东西,从而让学生早一点进入状态以便更好的进行第一年Core Course(微观,宏观,计量以及数理经济学)的学习。我们在Summer Math Camp完了后有个考试,内容就是关于数理经济学的,如果你能考过,就可以免修第一学期的Math Econ,我幸运的得以免修。还有几个同学也过了,结果我们就收到了Director of Graduate Studies的email,建议我们免修这个课的人去数学系修Honors Course for Analysis。而且,等第一年考过Qualify后,很多同学也被建议去修这个Sequence,从而导致我认识的人,不论做微观,宏观,计量,IO,还是Development几乎都修过这个课,至少是这个Sequence的第一学期的课。由此可见,基本的Mathematical Analysis是多么的重要。

个人建议:Baby Rudin与Apostol国内都有英文版(强烈建议,有英文版一定要看,千万不要读翻译过来的),基础比较好点前者为主后者为辅,基础感觉不是很 Strong的后者为主,前者为辅。这两本书的大部分答案网上都可以找得到,不过一定要自己做,要不然等于没学,切记切记!!!



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-12-14 08:13:37
1.2:Real Analysis

Undergraduate将来进Graduate School的Core Course,而Real Analysis则是Math PHD Program的Core Course。一点需要特别注意的是,千万不要将这门课跟国内的实变函数等同起来,光是内容就差的很多。国内的实变函数讲的是n维欧式空间的测度与积分,而Real Analysis则讲的是抽象空间上的测度与积分,而且这只是第一部分内容,后面还有关于Lebesgue意义下微分与积分的关系,Measure Decomposition与Radon-Nikodym 定理,基本的Functional Analysis(Banach Space,Hilbert Space甚至包括Topological Vector Space的基本概念)以及基本的Fourier Analysis(Classic Case)。也就是说,除了一点Compact Operator Theory之外,这本课包括了国内数学系本科实变与泛函分析两门课程的内容而且难度更大一点,当然这是针对我所在学校的数学系,其他学校不敢妄自揣测。

这门课比较好的教材为Rudin的《Real and Complex Analysis》(前九章),Folland <Real Analysis: Modern Techniques and their applications >,Royden的《Real Analysis》, Stein & Shakarchi <Real Analysis: Measure Theory, Integration, and Hilbert Spaces>。前三本我前前后后都学过算是,第四本只是粗略的浏览过。粗略评论一下:Rudin的写法相信很多人都听说过,极为简略看起来,但是包含内容甚深,真的是部经典之作,还是那句话,吃透受益终生;Folland是内容写的最全最成体系的,除了包含Rudin所有书的内容外,还有专门两章讲基本的Point-Set Topology,以及专门的两章讲Fourier Analysis,而且证明写的还是很明白的,个人很喜欢这本书;Royden第一部分则是先讲了n维欧式空间的测度与积分理论,然后第二部分讲基本的 Point-Set Topology以及Functional Analysis,第三部分才讲抽象的测度与积分理论,内容也算是比较全,但是行文风格我自己很不适应,很多重要的结论只是在某段中一讲,有的时候根本不知道某个句子竟然是一个很重要的定理,极度的Informal,不过作为参考还是很好的;Stein & Shakarchi则是著名的Princeton Leture Notes系列的第三本,没有细看,不过感觉作为Real Analysis的教材还是不够,只能作为参考我觉得,不能作为主攻教材。

个人建议:这四本书国内都有英文影印版了,其中Folland好像是今年才新出来的(心疼啊,我在这边花了50多刀买的),可以将Rudin与Folland作为主要教材,后两本作为参考,认真学好。



1.3:Measure Theory

其实把测度论写在这里是重复了,因为测度论的内容实际上是上面Real Analysis的主干内容与基础。之所以写在这里是因为,有些学校比如我所在的学校,考虑到很多学生比如Statistics,Financial Engeering以及咱们Econ的学生学习测度论主要用来进一步学习基于Measure-theory 的Probability theory,他们用不到那么多的Analysis的知识,因此便将这一块内容单独抽出来设置课程(感觉老外课程设置都有点市场化的感觉)。主要内容包括抽象空间上的测度与积分论与基本的泛函分析,因为泛函在Stochastic Process里面也是到处可见。当然,这里测度与积分讲的更加深刻,我上这门课的时候,光是Radon-Nikodym定理就证了整整两节课,到现在我还能记得大概的证明思路。

这门课的主要教材我当时用的是Bartle的《The Elements of Integration and Lebesgue Measure》,一本薄薄的200页教材花了我80刀,现在想来当时真是舍得花钱,换到现在肯定WS的从图书馆借出来然后去复印了。不过这80刀激励的我将这本书彻底涂成了一个花脸,到处都是Notes,想想也值了。其他的参考教材是Halmos的经典的GTM《Measure Theory》,这本书Measure Theory的经典,不过很多人觉得Notation有点老了,跟现在常用的不太一样,比如测度的Caratheodry Extention Theorem现在都是从一个Sigama-Algebra开时,那本书好像是从Sigama-Ring开始的。严士健的那本 <测度与概率>关于这部分简直是Halmos的翻版。还有本不错的书就是Dudly的《Real Analysis and Probability》,因为这本书后面就是讲Probability的,因此前面测度与积分的部分应付后面的Probability足够了。当然,你也可以参考前面Real Analysis部分的教材,比如Rudin《Real and Complex Analysis》与Royden,他们抽象测度与积分讲的还是不错的,其中Rudin证明Radon-Nikodym则是基于L^2空间的Rieze- Representation Theorem,是基于分析的,跟其他基于Measure-Decomposition的不一样。

个人建议:这门课跟Real Analysis是重复的,如果你学了前者,你只需要再补一下Measure Theory常用的证明技巧,比如Dynkin老先生的“PI-Lamda Theorem”,还有所谓的“Good Set-Bad Set”技巧等就没什么问题了;如果你不想花那么多的时间来搞Real Analysis,那么你可以学这门课,Bartle国内没有,我觉得可以用Halmos,Rudin的测度与积分部分,Halmos,或者再加上 Royden。这门课掌握了,如果你什么时候需要多一点的Analysis,你可以把上面Real Analysis的教材拿来,只看你不知道的就好了。

看了大家回帖以及问题的几点说明:第一,由于我现在还没有完全写完,所以不能及时回答大家的问题。但是等所有的写完后,我会就大家比较多的问题谈谈我的想法,因此,如果有问题就请在这里跟帖好了,不要把发帖分散在我总结的不同部分,这样我不好找,谢谢。第二,我把所有的课都列出来是因为想给那些需要用到但不知道哪些参考书比较好的人提供一点信息,并不是所有的读Econ的同学这些课都要学,没那个必要。如果给大家造成了Econ很恐怖的印象我感觉很对不起,但那绝不是我的本意。打好基础,需要用到某些知识的时候再学那些就好了,请一定看清我说的。负责任的说,我周围的同学不管是做别的领域的还是跟我同一领域的,都是基础打的好,用到某些知识的时候再去学,我想这个是具有代表性的(我本身在一个常青藤学校)。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-14 08:14:12
1.4:Fourier Analysis(Classic)

Fourier Analysis真的很重要的,记得有人称之为”Queen of Mathematics”,因为数学中无数的重要思想都来在于对这个领域的研究。它跟PDE那是紧密相连;Probability里面的 Characteristic Function就是一个Fourier Transform;Time Series的Spectrum就是Auto-covariance Function的Fourier Transform;统计与计量中讲Empirical Characteristic Function作为进行Specification Test的基本工具,还有好多好多例子说明它在不同领域中的应用。

不过这门课很少单独作为一门课被讲解,我是从前面的1.2 Real Analysis与后面要介绍的Wavelet Analysis两门课中各学了一半算是。Classic 的Fourier Analysis主要是研究Fourier Series 展开与Fourier Transform成立的条件,主要推荐的书为Stein & Shakarchi 的《Fourier Analysis:An Introduction》这是Princeton Lecture Notes In Analysis的第一本,也是大师Stein的主要工作领域(他的名著的调和分析三部曲想必很多人知道),看看这本书的前言你就可以了解为什么 Fourier Analysis这么重要。不过这本书是基于Riemann积分的,因为前面的Fourier Series与Fourier Transform讲的深度有限,毕竟现代的结果都是在Lebesgue积分下得到的,但是这本书给出了Finite Fourier Transform在Number Theory里面的应用,让你的视野一下子就开阔了很多。这本书我是从头读到尾的,每个定理的证明都认真推导过。基于Lebesgue积分的 Classic Fourier Analysis的主要推荐则是Katznelson著名的《An Introduction to Harmonic Analysis》,经典的结果都在里面,当然Rudin<Real and Complex Analysis>的第4章的一部分,第9章以及Folland的第6,7章都是很好的介绍。Pinsky的《Introduction to Fourier Analysis and Wavelets》的Fourier Analysis写的也很好,不过我有点Follow不了他的证明,有时候太简略了觉得。

最后说一下,这里讲的都是比较经典的结果。现代的 Fourier Analysis理论(现在都叫Harmonic Analysis了),包括Littlewood-Paley以及Calderon-Zygmund theory,真是是太难了,我在学Wavelet Analysis时本来想试着去学一点,因为Wavelet有一块理论基础要基于这些,结果后来实在学不下去,只好就此放弃了。当然我现在觉得我需要用的东西也不需要学这么深入的东西,所以想想心里就舒服多了,自我安慰还是很好的。

个人建议:以Stein & Shakarchi,与Katznelson为主,这至少需要一个学期,如果你不想花那么多时间,那么先看Stein & Shakarchi,然后再读Rudin与Folland的相关章节,最后以Katznelson跟Pinsky作为参考,遇到不明白的到这里来找,这样应该就OK了,其实我就是采取的后一种策略,当然这跟我学过Rudin与Folland有关系。



1.5:Complex Analysis

这门课我想说的不多,这里本科有个Honors Course for Complex Analysis,然后Math PHD的Core Course 也包括Complex Analysis,显然后者比前者要理论的多,前者计算多一点,后者理论比较多,甚至包括Riemann Mapping Theorem的证明,但是就我看到的来说,感觉本科的就够用了对Econ来说,因此学到什么程度依大家的喜好来定可以。

前者的参考书可以用Brown & Churchill《 Complex Variables and Applications》,Stein & Shakarchi的《Complex Analysis》,也即Princeton Lecture Notes In Analysis的第二本的前面两章。后者的参考书可以用Stein & Shakarchi的《Complex Analysis》后半部分,Rudin《Real and Complex Analysis》的后半部分,当然经典的Alforos的《Complex Analysis》也是上上只选。我当时学Complex Analysis上的是Graduate Course,用的是后面这几本,以Stein & Shakarchi为主要教材(这本书习题答案网上找得到),遇到不会的就去另外两本上找,其中关于Residual 的计算主要是靠Alforos上的内容。老师讲的飞快,一个月就把前面相当于本科复变函数的部分讲完了,后面讲了很多非常理论性的东西,比如 Riemann Manifold的东西,听得我很晕。

个人建议:我自己觉得如果你本科是数学系的或者学过复变函数在国内,那么应该不用再学这个课了,足够用了。如果没学过的,建议修这门课,毕竟至少Time Series里面很多东西都是Complex Varariable的,实际上我自己正在写一个Paper,里面Estimator的Asymptotic Distribution服从Complex Normal Random Variable。另,这些书在国内都有英文影印版,省钱啊!!!



1.6:Basic Functional Analysis:

Functional Analysis我打算分开两部分讲,因为做不同方向的人需要是不一样的我觉得。我所在的学校Functional Analysis是有两个课,一个是与前面有重复的叫做Applied Functional Analysis,另外一个是Advanced Functional Analysis,是比较深的理论。本部分讲第一个。这个课的内容就是基本的Functional Analysis内容,主要是为那些Engeering,Statistics,Finance,Operation Research专业的学生设计的,Math PHD学生是不会上这个的,因为大部分内容他们都在前面的Real Analysis里面学过,除了一点Compact Operator Theory或者至多再加上一点Generiazed Function Theory。也就是说,这个课内容主要是Banach Space, Hilbert Space, Compact Operator,以及Generalized Function Theory.前面两部分都是Real Analysis里面的内容,后面分别属于Operator Theory与Fourier Analysis。这学期我们系两个在做Finance,Decision theory的比我高一级的哥们就在上这个课。

主要的参考书是 Friedman《Foundation of Modern Analysis》,这本书写的真是太好了,看起来很舒服,证明写的很全很清楚。其实我没有上这个课,我上的是后面的Advanced Functional Analysis,但是因为后面这个课也讲Compact Operator与Generalized Function Theory,而且两门课老师是一个人,因此我找了这本书看。

个人建议:Friedman这本书国内好像没有影印版,但在网上好像有电子版。有一本很好的替代教材,而且是中文的,那就是夏道行先生的<实变函数与泛函分析>,这本书跟 Friedman那本书讲的内容深度几乎没什么差别,我觉得这是我看过的中文数学书里面写的最好的一本了,真的是很好!!!!!!!!!!!!



1.7:Advanced Functional Analysis:

这是一门数学系的高级课程,好多来修这门课的都是二年级的Math PHD学生。我是这个学期上的,内容是Topological vector spaces.,Banach algebras.,The spectral theorem for bounded and unbounded operators.,Compact operators ,Semigroups of operators。从内容你就可以看出难度来相信。其实我觉得这门课应该改名叫算子理论,因为主要是讲各种算子以及谱理论。虽然这门课很难,但这是我这学期上的最舒服的一门课了,原因是老师真的是讲的太好了。上课从不看Notes,那么难的定理,不单Intuition讲的明白,而且证明都可以边讲边推。我刚开始以为他还很年轻,因为他老是充满了精力。后来我的朋友告诉我,他已经76了,很快就要退休了,真是令人惊叹不已,不得不服。这门课没有 Final Exam,所有的学生轮流讲最后两章也即Compact operators与Semigroups of operators的内容。结果轮到我的时候正好是Hille-Yosida定理的证明,别人都只需要讲一节课,而我却两节课还差点没讲完,不过 Professor安慰我说,我多给你加几分,然后冲我幽默一笑,真是有意思。这门课快结束的时候,班上的学生都觉得挺依依不舍的,毕竟一起钻研了这么多 Crazy定理的证明,也算是共患过难了。还有小插曲一个:班上一个罗马尼亚的学生问我汉语跟韩语的区别,我立马跟他说,韩语以前不是语言,只能说,不能写,写都是写中文,他觉得很惊讶。班上其实有个韩国女生,化妆之后挺PP的(但不知道化妆前啥样),不过那天她好像不在。管不了这么多了,一定得给他们普及常识,别再让汉语韩国造这种白痴的说法恶心了!!发现跑题了,书归正传,我们上课用的是老师自己写的Leture Notes,参考教材是Rudin的《Functional Analysis》(被称作Adult Rudin),另外Zimmer的一本薄薄的<Essential results of Functional Analysis>与Lax《Functional Analysis》写的也是很棒的,可以用来作为参考。

个人建议:如果你做的方向不是用特别深的随机过程理论,这些就不必要学了,学好前面的Basic Functional Analysis就好了。我学这个是因为我可能想做点Continuous Time Stochastic Process的估计与检验,而这里面的Semi-group of operators是研究Continuous Time Markov Process的一个重要工具。如果要学的话,Adult Rudin与Lax国内都有英文影印版,不过基础一定要好,这样才能学明白,而且不至于耗费你大量的时间。!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-14 08:14:46
1.8:Wavelet Analysis

首先声明,Wavelet学不学看你是否需要它。我学这个是因为我要做的东西需要Wavelet这个工具。Wavelet是近十几年才发展起来,但是因为它的应用极为广泛,而且相对于Fourier Transform有着Space Localized的优势,从而成为很多领域的重要的工具,比如Signal Analysis, Numerical Solution for Differential Equations, Nonparametric Estimation,甚至现在Econometrics 里面都有了很多的应用。

我是这学期上的这个课,课程是为高年级的Undergraduate设计的,但其实应该算是Graduate的课才对,因为其中很多证明虽然不讲,说可以Take It As Granted,但是如果你把太多的东西当作Given,那就合着什么都没说。学这个的基础至少为前面的1.6 Basic Functional Analysis与1.4 Fourier Analysis,要不然很多你东西你根本不知道怎么回事。

我上课用的课本为Frazier, 《An Introduction to Wavelets Through Linear Algebra》,说是Introduction跟用Linear Algebra,其实根本不行,所以这本书的Title很具有诱惑性,不过这本书好处在与将Finite的情形讲的特别清楚,从而不至于使你迷失在无限维空间的众多的公式之中,忘记了身处何方,而且毕竟你要用Wavelet,肯定用的都是Finite近似Infinite的情形,所以还是很好的。顺便提一句,这是我这学期四次Presentation中的第一次,巨紧张无比当时,幸亏前天晚上对着我学文科的LP一通猛讲,进行了提前训练(估计她才不 Care我讲的啥,只是当看耍猴了),才使得第二天Presentation不至于出丑,不过经过这么一次,现在对任何Presentation都没什么畏惧感了,毕竟如果你在讲那么你就是专家,所以没什么可担心的。

其他比较好的参考书有前面提到过的 Pinsky,Hernandez 与Weiss 的《A First Course on Wavelets》,Wojtaszczyk的《An Mathematical Introduction to Wavelet Analysis》,至于著名的Daubechies的《Ten Lectures on Wavelets》,我看还是算了吧,书太难了,如果你不是搞数学的,看这个感觉没什么必要。

个人建议:我只知道Pinsky的书国内有影印版,其它的可能没有,不过Pinsky的书写的足够用了我觉得,把它看明白了,做点Econ里的应用应该是可以了。别的书大家可以试着在网上搜索,应该可以找得到。



1.9:ODE&PDE:

这个我没什么可说的,因为我自己还没正式上过课,只是在国内的时候自己浏览了一下一本中文教材,丁同仁的《常微分方程》。我下一年有可能去修这个 Sequence,第一学期ODE,第二学期PDE。它们是比较有用的,不论对做Macroeconomics还是Finance的来说,因为 Optimization问题解出来是一个ODE或者PDE,而且PDE 与Brownian Motion紧密相连,同时ODE则是Stochastic Differential Equation的Intuition基础。这方面的书我还没读,虽然我知道一些经典的书,但是因为我没读过,所以我就不推荐了!有兴趣的兄弟姐妹去网上查查可以。

到这里纯数学的部分就完了,后面会有概率跟统计的部分。



2:Geometry&Topology:

这个Field里面我只说一下Point-Set Topology,因为更深的比如Algebraic Topology 跟 Differential Topology一是我没学过,二是我感觉经济学里对这些东西的应用都集中在General Equilibrium里面几乎,早被Arrow,Debreu那时代的大师们做的很深入了,好像很少有人号称自己做General Equilibrium了现在。不过可笑的是,国内竟然有连基本的数学知识都很贫乏的人竟然号称自己做General Equilibrium理论,真是滑天下之大稽。

Point-Set Topology我没上过课,由于我一学期毕竟精力有限,必须要上的已经将Schedule添的满满的了,实在没办法再上了,即使勉强去听,没时间做题,没有长时间的认真思考,也学不到什么东西。因此我选择了在来美后的第一个Summer自学。不过因为第一年我在修Real Analysis已经将很多基本概念都熟悉了,而且最重要的是Topology在Analysis里面的应用大概都接触到了,从而使得我在自学时并不感到迷茫,并没有“为什么提出这些概念”,“这些概念有什么用”,“什么样的Intuition”这样的问题,从而速度快了很多,而且理解的也更深刻一些。即使是这样,也花了整整一个Summer三个月的时间才算是学完,我用的是Munkres的<Topology>,这本书我不得不说真的是写的太好了,概念清晰,证明思路清楚完整,尤其一些比较重要的定理的证明,都有相关的图形辅助,直观明了,绝对是一本经典之作。值得一提的是,这本书前面的 Set Theory讲的尤其的好,毕竟我们不是做数学的,Set Theory我们不需要知道的太多,但是这本书的Set Theory讲的比我们需要知道的深一些,但是直观清楚,读透了这个就不需要再看任何Set Theory的东西了,够你一辈子用的了,如果你做Econ而不是数学的话。我自己是讲这本书Point Set Topology的部分每一部分都认真读过,证明都过了至少一遍,重要的定理(比如Urysohn’s Lemma, Tynchonoff Theorem)反复看过几遍,课后几乎每一道习题我都尝试过,因为我比较幸运的找到了这本书课后习题的答案,因此做完后有地方可以对照一下是否自己做的对,思路是什么样的。其实我是在网上搜到了一个Course Webpage,好像是荷兰一个大学的,这个Course用的就是Munkres,布置的习题都是这上面的,上面有习题的Solution。当我刚开始想下载时,就出现网页错误,于是我就Email问那个Professor。结果人家很快回信告诉我网页错误他已经改过来了,可以下载Solution,并说如果有问题可以发信问他,真的是太Nice了。这个对我的帮助可以说是巨大无比。当然,在学这本书的时候我也不断回去看Rudin的《Real and Complex Analysis》,Folland<Real Analysis>, Royden<Realy Analysis>,其实后两本都有算是比较全的Topology的章节。通过不断回去读这些,我对Topology的应用,概念的由来感觉掌握的更加牢固,毕竟这些书是分析的书,在写Topology部分时都比较着重于跟在分析中有用的Topic,比如Complete Metric Space, Function Space,Arzela-Ascoli定理等,这些Topic在Analysis都有着极为核心的作用,因此掌握它们是必要的。

最后为了说明学这门课的重要性,我说一下Point Set Topology的应用,在分析里的就不用说了,如果你是做计量理论的,那么你一定知道Limit Theory的重要性,也就是各种各样LLN,CLT定理。其中用的很多的一个方法就是Embedding,比如极为重要的CLT for Matingale Difference Sequence,而这个方法基于的就是讲Stochastic Process看作一个从时间到一个Function Space的映射,在这个基础下来证明Weak Convergence,著名的Billingsley的《Weak Convergence of Probability Measure》整本书就是讲这个,我相信想做计量的人一定都知道。而这只是A tip of Iceberg,后面非常多的东西都基于这个,比如统计Asymptotic Theory里面的Empirical Process,Stochastic Process里面的Convergence,等等。所以Point-Set Topology我个人认为还是很重要的,当然专门学,只是在相关的课程里面学一下基本内容也是可以应付的,但是对于我自己来说,每次学不同的东西都要来一点Topology中新的东西很痛苦,索性我就一次搞定,再无后患了。不过这纯粹个人习惯。

个人建议:学这门课以Munkres为主要教材,一定要从头学到尾,课后习题尽量都做掉,除了个别怪异的,然后经常翻翻Rudin,Folland, Royden等等,以对其有更加透彻的了解。


3:Algebra



3.1:Linear Algebra

如前面的个人背景介绍,我个人对Linear Algebra的基本概念与运算是很熟悉的,但是来到美国之后才发现,其实自己所学的仅相当于这里数学系Undergraduate第二年的Linear Algebra,而对Honors Course for Linear Algebra里面很多理论的东西则并不知道。实际上,这正是偏计算与偏理论型Linear Algebra课的区别,一个简单的例子就是,前者将矩阵看作一个数据表,而后者将矩阵作为一个Linear Operator。据我所知,国内除了数学系一年的高等代数课外,其他系所教的Linear Algebra应该都是一学期而且主要注重于计算的,理论部分的讲解并不深。即使是国内数学系一年的课,拿北大数学系那本《高等代数》,理论的深度跟这个 Honors课也是存在差距的,比如Spectral Theorem那一块,深浅程度差别是很大的。

为什么要学这些理论部分呢?想想泛函分析里讲的是什么,那不恰恰正是矩阵代表的有限维线性空间上线性算子在无穷维空间上的推广么!!!我当初在国内学泛函分析的时候,老是对有些概念如 Dual Space,有些技巧比如用一个线性空间上的所有线性泛函来刻画这个线性空间,等等很多东西觉得很茫然,感觉不到从哪儿来的。而实际上,这些概念都是 Linear Algebra相应概念的推广,只是因为泛函里是无限维空间所以我们需要考虑Topology的问题,而Linear Algebra里则是有限维空间,上面所有的Topology都是等价的,因此我们不在Linear Algebra里面考虑Topology,只有Algebra的相关概念而已。

这个课我学了两次,第一次是来美的第一个学期,当时上这个 Honors的课,大概到了学期一半的时候,因为Econ的课考试太多(两次期中,一次期末),再加上我还上了巨难无比的Real Analysis,最后不得不放弃掉;然后上个学期,我又从上次自己停下的地方接着开始听,算是把这门课完整学了一遍。上课教材是Curtis 《Linear Algebra: An Introductory Approach》,写的非常好,前面从Chp1到Chp6相对来说还比较容易对付,后面从Chp6到Chp9则是精华部分,理论讲的很深,证明也必须反复琢磨,题目要多做,这样才能理解深刻。而且很多Abstract Algebra的东西都在这里穿插讲解,比如Group,Ring,Linear Algebra等等。其中关于那些Decomposition Theorem(Jordan,Rational等等)的证明,是基于了Linear Algebra(一个线性空间再加上一些乘法性质)的概念。而Linear Algebra在泛函里的推广,则是著名的Banach Algebra,它就是无限维空间里Spectral Theorem证明的基础。还有一本著名的教材是Hoffman&Kunze的《Linear Algebra》,写的更Comprehensive一些。

个人建议:Curtis国内有影印版,可以以这本书为主,将其做透,习惯尽量全做,如果有兴趣可以看一下Lang 的<Undergraduate Algebra>,国内也有影印版,不过比Curtis的书要简单。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-14 08:16:16
3.2:Abstract Algebra

这门我没什么可说的,我自己没去上过课,关键是其在Econ里面不象Analysis那么重要。Abstract Algebra的概念我一部分是在Linear Algebra里面学到的,一部分是自己就读了一本薄薄的中文教材张禾瑞《近世代数基础》,再参考了一下Rotman的《 A First Course in Abstract Algebra》。 我见到过的Abstract Algebra是在Functional Analysis里面Banach Algebra跟Semi-Group算是一点,另外的是在Fourier Analysis里面有抽象的Fourier Analysis在Locally Compact Hausdorff Group空间上,算是将Topology跟Algebra里面的Group概念结合起来,其实这些都是对n维欧式空间的推广。关于这门课我自己也还没决定是否去修,因为以现在我见到的来看,除了我上面所说的Abstract Algebra的东西,好像进一步的深入不是很必要。所以,有时间有精力愿意学的就去学,如果你象我一样,不是那么有时间,我觉得自己读一下张禾瑞的《近世代数基础》大概了解一下就好了,如果感觉不是很清晰,可以再看一下Rotman,感觉这样就足够了。



六,概率统计课程科目与教材推荐

好,现在终于到了与Econ,Finance 关系最紧密的概率统计部分。关于概率统计的重要性我实在不想再强调了,不过需要再说一句的是,很多同学觉得学计量,学Finance很多东西看不懂,迷茫,那就是因为你概率统计没学好;甚至还有很多论调说什么Idea最重要,数学不重要,对于这种说法,我想说,别说Econ,Finance,连数学都是 Idea最重要,任何学科都是Idea最重要的,但是你连基本的知识,研究工具都没掌握,都一窍不通,何来资本去讨论什么Idea??好了,语调有点激烈,不想多说了,这个问题说多了没意思!下面我概率统计分开讲。



1概率



1.1:Basic Probability Theory

这个很重要,虽然不是基于Measure-Theory的,但是是你明白概率是什么东西的基础。国内数学系本科一学期的概率论的内容基本跟这边 Undergraduate的Honors Course for Probability差不多,但问题是很多学校的老师不怎么认真在讲的时候。比如我所在学校的数学系,当时那个老师真是不咋地,上课光在那闲扯淡,证明一点都不讲,而且课堂过大,整个数学院所有不同专业的学生一起在上课,起码100多号人,效果可想而知。我不知道别的学校情况咋样,但是我本科所在学校的数学系还是国内比较不错的,连这里况且如此,很多地方可能也好不到哪去。当然,这只是我个人的瞎猜想,没有任何证据。

这门课的主要教材是名家Durrett的《The essentials of Probability 》,我想很多人都知道他的另外一本Graduate Probability教材《Probability:Theory and Examples》,现在美国这边的学校几乎都用这本书作为Math PHD Probability课的教材。顺便说一句,Durrett是超级牛人钟开莱(中国人,虽然是美国公民)的学生,好像我记得他在一本书里管钟开莱叫做 Academic Godfather,真是牛到无极限啊。

这门课Durrett这本书所有内容全讲,题目几乎全做,这样使得学生 Basic Probability的基础相当好,Probability的Intuition很不错,从而在后面学习基于Measure Theory的Probability跟Stochastic Process时,不至于迷失在Technical Details中。不过这本主要是给Math的学生的,我自己觉得Casella & Berger的《Statistical Inference》前面的Basic Probability部分也是超好无比,而且这是一本数理统计的教材,多了很多Distribution的东西,从而给你学数理统计打下一个坚实的基础。并且,这本书习题量大质量又好,而且网上有Solution Manual,所以是非常好的习题书。我自己其实没有上这门课,不过我们计量I(美国这边计量I其实是概率论与数理统计的内容,不过有经济系的特点罢了)当时教材是Cassella & Berger,于是我就把前五章的习题都给做了,真是受益匪浅。另外,国内复旦李贤平的那本概率论教材也是非常好的。

个人建议:经管类毕业的同学我想都有一点概率论基础了,所以个人觉得不必要专门花一学期修这门课,但是我想自己自学或者在上计量I的时候将基本内容再过一遍,查缺补漏是有必要的,多做点题目,最好能将 Casella & Berger前面五章的题目做完,然后适当的参考下Durrett当有概念不清晰的问题时,这样基础就打的比较牢了。Casella & Berger国内有影印版,习题答案网上可以找得到。至于原来读数学的同学,请根据你原来学的深度自行决定。



1.2:Measure-Based Probability-Probability I

这门课跟下面的Introduction to Stochastic Process-Probability II通常在美国这边是一年的Core Course Sequence 给那些将来可能做Probability的Math PHD学生。Probability I的内容一般包括(以我所在的学校为例)以测度论为基础的的概率基本概念,经典的极限定理(LLN于CLT for Independent Sequence), Random Walk,Conditional Expectation,有的还会加上Discrete Time Martingale Theory。这门课的先修课为Real Analysis或者Measure Theory,你必须对Measure and Integration的内容很熟才行。这门课我想不论你是做微观,宏观,还是计量还是Finance基本上最好都要学,毕竟现代经济学Uncertainty是核心,从而概率的应用极为广泛。微观里现在做的Decision theory, 关于Imperfect Information的很多东西都需要很好的概率论基础,上周跟一个要跟我们这里一个微观牛人做的同学见面讨论,他说那个Professor的 Paper里就用到了Martingale Convergence Theorem,虽然不是很深,但是一个好的Probability基础还是很必要的;宏观里面常用的Stochastic Optimal Control,Stochastic Dynamic Programming;还有更不要提Finance了,如果没有一个好的概率基础,根本连现在入门的Asset Pricing教材你都看不懂,比如Cochorane的《Asset Pricing》,更别说Duffie的《Dynamic Asset Pricing》跟Merton的《Continuous-time Finance》了;计量理论我就更不说了,它本来就是研究一些有经济数据特点的统计理论的,想想Time Series Econometrics里的Unit,Cointergration吧,那里Asymptotic distribution的推导都是基于Functional CLT的。我就不多说了,总之,我们这里理论做的比较好的同学,几乎都有一个很好的Probability基础。

如果你Measure Theory掌握的好,学这门课会舒服很多,当然,你依然需要花费巨大的时间跟精力。我这门课上了两次,一次是在Operation Research系里上的,讲课的是个俄罗斯裔的老师,课讲的极好,真的算是领教了Russian的数学水平,一个字,牛!!!光作业就给我们布置了14 次,每次5-7个题目,一学期下来做了快一百个题目,想象一下,Graduate Course,每个题目光写有的时候就要2页多纸,学的时候真的是痛苦之极,不过学完之后真的是感觉收获特别多。我经常跟OR几个同学讨论问题,他们都是国内数学系出身,有的都是在这边的学校读过数学然后再转到这边来的,他们对作业量之大也很头疼,不过我们都很觉得那个老师确实讲的好,没得说。一个搞笑的是,这个老师的Webpage上写着,“对于那些不想完成作业的同学请点这个链接”,然后等你点了后就到了另外一个Web上,上面是他练空手道的一张照片,而且照片的光线有问题,他两眼发的都是绿光,恐怖啊,呵呵!!

由于这个课老师为了照顾一些对Measure Theory不是很熟的同学,于是他花了快一半的时间又把Measure Theory讲了一遍(这部分内容他主要用Billingsley的《Probability and Measure》里面的测度论部分),因此后面概率的东西只是讲到了CLT,后面没有讲Martingale,而且LLN跟CLT讲的不是特别深入,只是证明了IID情形下的定理,并没有证明Independent but not Identical Distribution的情形,而且我也想学多一点,因此我就去上了Math PHD Probability Core Sequence的第一学期的课(我本来想着上了OR这个然后直接去上第二学期的Probability II就算了的)。总算是把这个搞定了。

总的来说,Probability的好教材是非常之多,其中有Durrett,《Probability: Theory and Examples》,Williams,《Probability with Martingales》,Billingsley,《Probability and Measure》,Resnick 《A Probability Path 》,Jacod & Protter,《Probability Essentials》, Dudley,《Real Analysis and Probability》, Shirayev,《Probability》,以及牛人钟开莱的《A Course in Probability》这些教材基本上都是包括了Probability I的测度论为基础的的概率基本概念,极限定理与Probability II的Stochastic Process的内容,所以基本上每一本都可以作为这一Sequence的教材,不过不同的教材特点还是不一样的。

Billingsley 是公认的好教材,特点是全,既有Measure Theory的完整介绍,又包含有直到Brownian Motion的一年Probability课的所有内容,但有个问题是体系安排很怪异,不适合从头看到尾,事实上我们是从Chp2,Chp3开始学,然后穿插上Chp1的内容,然后再过渡到后面的Probability部分的。这本书的行文也是Informal式的,很多重要定理的叙述证明都是在字里行间完成的,并不是定理-证明式的写法。我个人经验是不适合自学,如果有老师教课用这本书,那真的是再好不过了,不过如果没有老师教,最好把这本作为参考。这本书的课后习题非常好,对于比较难的题目后面附有简要的答案。做Econ的人好多Paper后面在涉及Probability的时候引用的都是这本书(看看White的《Asymptotic Theory for Econometrians》),我猜他们当时学概率用的都是Billingsley这本教材,呵呵。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-14 08:17:58
Durrett的教材是给Math PHD的标准教材,全书主要讲概率,将Measure Theory的主要结果附录在书的后面,以供参考,因此,学这本书必须有扎实的Measure Theory基础。现在国内这本书刚出了影印版(Billingsley现在也刚处影印版,痛啊,这两本书花了我快200刀就,因为我修课的时候国内还没有影印版,唉),忘记上面是谁做的序了,讲了一个故事,说是有个Math PHD学生放假还是怎么着出去玩的时候,身边就带了这么一本书,然后这个学生现在美国是美国一所著名大学的Professor了已经。抛开故事真假不说,我对这种传说式的故事一点都不信,搞得好像背着宝剑,身怀绝世武功,天生的武功奇才一样,不知道是不是武侠小说看的是不是太多了(实际上,我的武侠小说看的是巨多无比)。Durrett这本教材讲的虽然挺难,但只是一些早期Probability结果的总结,离着研究前沿还差的很远。所以我觉得序里的故事是想说明把这本书学透基础就会打的很牢固,但是这种故事容易对人形成误导,起码我记得我在未学Measure Theory跟Probability I之前也看过很多这种小故事,看完后热血沸腾,老想着一口气吃成个胖子,但是事与愿违,反而事倍功半,其实最重要的还是下功夫好好学。当然,这只是针对我个人而言,别的同学可能比我要理智的多。闲话不多说,Durrett这本书Probability I的内容讲的比较深,其中Random Walk作为单独一章进行深入透彻的讲解,我想Random Walk做Econ的同学应该很熟吧,这就是Unit Root Process了。其他书唯一这样做的就是钟开莱了,我想Durrett这样做跟他是钟开莱先生的

学生有关系吧应该。Durrett这本是我们这 Probability I&II这个One Year Sequence的主要教材,老师没有自己的Lecture Notes,会把这本书从头讲到尾,至于为什么我就不多说了。

下面想说牛人钟开莱的书了,这本书如前面个人背景里面所述,我在国内的时候上那个测度论因为很多问题不明白所以就找了这本书来看,结果受益匪浅。忘记在哪里看过了,说这本书其实是将前苏联数学家对基于测度的概率论,对 Independent情形下Limit Theorem的研究的一个总结。也就是说,这可以说是一本现代概率论教材的雏形,虽然在这之前也有很好的教材,但是正是这本书以及钟开莱在 Stanford教授这个课程的经验,导致了现在大部分学校的第一门概率Core Course所教授的主要内容为Independent情形下的Limit Theorem。实际上,我觉得在Limit Theorem定理的证明上,这本书依然是讲的最好的,不但严格,而且清晰明了,反而现在很多新出的概率书讲的迷迷糊糊,要吗不严格,要么太 Technical。不过这本书大量集中于Limit Theorem的证明,作为Probability II主要内容的Martingale,Markov Chain讲的很少(当然,我觉得依然讲的很好,特别干脆利落),对Ergodicity,Brownian Motion更是一点都没涉及,他前言里好像说了这些应该作为第二门课的内容我记得。所以,这本书是加强版的Probability I教材,但是不能作为Probability II的教材。

Shirayev的书是一本典型的Russian数学书,内容跟Durrett 基本上一样,只是前面加了一章基本的Probability and Stochastic Process,后面用两章讲了Stationary Process,少了对Brownian Motion的介绍。这本教材证明上清楚明了,课后习题很多是一些重要结果,是很好的教材。而且对Stationary Process的讲解特别好,算是奠定了Time Series Analysis的一个数学基础。想做Time Series Analysis我想这是一本必备的参考书。

Williams的书短小精悍,讲完Probability的基本内容立即进入Martingale的学习,真的是又快又准,毕竟Martingale在现代Probability甚至是Econ,Finance等等都起着关键的作用。

Resnick 的书是我上OR那个Probability的教材,因为Resnick本身就是在OR系,所以他写的教材就稍微简单点,很多结果都给出了证明,不象是前面那基本为Math PHD准备的书很多结果你自己要证明,有的时候花很多时间。这本书的内容最后一章讲了Martingale,前面是Measure Theory跟Probability I的内容,看起来相对其他几本要稍微容易点,很多学校开给Engeering,Statistics或者Finance学生的Probability课都用这个作为教材。

Dudley的书Probability部分讲的内容很多,从经典的Limit Theorem到Martingale,到Brownian Motion,Ergodicity甚至还有一些Weak Convergence的内容,由于这本书整合了Real Analysis跟这么多的Probability内容,深度上感觉稍微差一点。Dudley本人在Empirical Process方面是奠基人之一,他1978年左右的几篇Paper给出了处理Empirical Process不Measurable一种处理方法,奠定了他的地位。他本人是MIT的教授,这本书是MIT概率论的教材,这门课的内容你可以在MIT Opencourse上查得到,上面有一些讲义跟习题答案,可以用来作为参考。

Jacod & Protter我没读过,把它列出来是因为这本书近年来有很多地方都在用,更重要得是这两个人虽然都是数学出身,但是现在都在做Finance得东西,而且都是名家。Protter是OR的Professor,我想很多做Finance的人都知道,他跟Jarrow有一篇关于Term Structure的Paper影响很大,是用Diffusion Process作为Model的。而Jacod则是法国巴黎“?“大的数学系教授,他跟Princeton经济系的Professor Ait-Sahalia(Review of Financial Studies的上一个三年的Editor)合作了一系列关系Continuous Time Process的算是金融计量领域的文章。

当然,在这边Finance领域主要还是在Business School,但由于Merton,Duffie等人对连续时间模型的使用导致了很多原来做Probability的数学出身的人都在搞Asset Pricing,不过他们管这个叫做Financial Mathematics,Financial Engeering等等,国内山东大学的彭实戈搞得所谓的金融数学其实就是这个。结果现在在搞Econ,Finance的人与这批以前数学出身的人之间有了巨大的分歧,前者认为后者摆弄数学,没有Intuition,没有Idea;而后者认为前者数学不行,模型用的不严格。于是就各搞各的,各自形成了一个圈子。个人认为两者都有道理,前者很多数学确实不行,模型用的不是很好,统计工具掌握的也不好,于是Journal of Finance上的Paper非常多的计量用的不对,或者是为了一个比较Significant,比较Interesting的结论故意这么做。其实很多结果,如果你用正确的或者比较严格的计量方法再做一遍,根本就不对,从而得出的Interesting的结论的可信度大打折扣。但是由于这些人已经形成了一个圈子,他们之间互相接受这种做法,所以文章还是能发,研究还是能做。说道这里,顺便说一下,记得以前在国内看到有人把Journal of Finance(JF), J of Financial Economics(JFE) 跟Review of Financial Studies(RFS)给排了一个顺序,说什么这个比那个好,那个比这个好。我猜那个排法应该是按照所谓的影响因子或者引用率之类的来排的,但是个人觉得这种东西没什么意思,这三个Journal都是Finance的Top Journal,如我前面所说JF的文章数学水平,计量工具的严格性要差一点,但是这样导致了结果很Interesting,而RFS是数学应用深一点,计量工具用的严格,但反而结果不那么Interesting。如此一来,使得JF的引用率要高于RFS,但你能就说前者比后者好吗?如果你真的这么想,那比较一下Econometrica上文章的引用率跟其他Journal然后再来回答这个问题。实际上,在美国这边的学术圈子里也存在争论,有人觉得JF好一些,有人觉得RFS更好一些,所以这也是没办法的事。但是我觉得做事要严谨一点,不要对别人产生误导,所以当你说JF比RFS好,或者RFS比JF好的时候,我自己就会加上,“我觉得“,或者“按照引用率,按照工具使用的严格程度来说“等等的修饰词以表明你这样判断的根据。

接着上面,反过来讲,后者确实是Intuition比较差一点,由于Econ比较特殊的学科性质,你用的严格却没有Interesting的结论,模型很好,但是结论跟以前一样,这样就没什么太大的意义。拿彭实戈老师做的Backward SDE来说,数学上确实很重要,提供了一种

新的处理SDE的方法,而且实践上也可以应用;但是拿到Finance理论上来看,就是提供了一种解B-S模型的方法,而Finance理论则是再探讨B-S模型本身的问题,所以这个研究对于Finance理论则基本上没什么意义或者意义不是很大。从这里可以看出,学术研究某种程度上也是市场化,需要有人跟你一起开拓,有人欣赏你的东西才行,要不然你自己认为的再好的东西也卖不出去。

好了,该结束这一部分了,太长了。这部分介绍的书太多了,说一下我的学习过程。我个人由于是修课所以主要用了Billingsley的教材,基本上通读了算是,钟开莱的书我也基本上看完了,看这个是因为LLN,CLT 的证明讲的好。Shirayev我精度了他讲Stationary Process的两章,及Martingale那一章的部分内容。Durrett我没有精读,因为上面的好多证明都在别的书上认真推导过了,而且我下面会再去上那个一年的Core Course Sequence,这次完全讲这本书,所以打算把它精度一遍。其他几本Williams, Resnick , Dudley都只是在看别的书产生问题时候去找相应的部分做了参考。还有就是修完课后我花了几天时间把它们浏览了一下,以对照一下感觉。

个人建议:可以用Billingsley,Durrett,钟开莱,Shirayev中的任意一本作为主攻教材,尽量完成大部分的课后习题,很多题目网上应该可以搜索到答案。这四本书国内都已经有了英文影印版了,可以省钱了又。其他几本Williams, Resnick , Dudley可以作为参考,Williams网上有电子版,而Dudley国内有英文影印版,Resnick就不知道了。



1.3:Introduction to Stochastic Process-Probability II

这门课主要内容是Discrete time Stochastic Process,,讲Martingale, Markov Chain, Stationary Process and Ergodicity, Brownian Motion(BM),有的老师还会加上点Introduction to Ito’s Integral with respect to BM。我这学期上这个课的老师是在概率领域里面一个超级牛的Russian老头,他教的东西太多了。除了上面的内容,他还讲了Continuous-time 下的Martingale跟Markov Process,甚至包括了Stochastic Integral最General的情形即对于Semi-martingale的积分,所有这些内容加起来一般都是分两门课来讲的,因此作业做的我很痛苦。不过痛苦完后感觉收获还是很大的。由于他这种教法是非常规的,并不是Probability II应该包含的内容,因此学这门课我觉得还是以标准内容为主,打好基础,这样以后要用到比较深的概率理论就可以自己学了,因为后面你要用到的可能都是近年才得出的结果,这种内容开课讲的好像不多,即使有也跟老师的研究方向有关了。

鉴于前面已经将众多概率教材做了详细介绍,这里就简要一谈就可以了。Billingsley的书把Probability II里面的内容都包含了,但不是特别成体系,都是分散开来的,所以不太适合作业主要教材。不过他最后一部分分两章讲的General Theory for SP跟BM是非常好的,前面一章详细的介绍了给出一个Finite Distribution然后Construct一个SP的方法,也即Kolmogrov Consistency Theorem,给SP的存在性奠定了一个基础。Durrett是标准的教材,因为将Measure Theory作为附录,从而腾出了大量空间详细介绍SP,是非常好的现代教材。钟开莱这方面的内容很少,但是他最后一张对Martingale跟 Markov Process的介绍切中要害,理解深刻,我觉得非常值得一读。Shirayev内容跟Durrett差不多,只是少了BM的介绍,但是多了 Stationary Process的详细讨论。Williams, Resnick , Dudley都有一些相关的介绍,但不如前面基本书是系统的介绍,所以只能用作参考我觉得。

个人建议:Durrett或者Shirayev都可以作为主要教材,主要的参考教材可以用Billingsley,钟开莱,其它基本可以翻一翻,了解一下别的处理方法。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群