# 退步前十名
data[order(data$change,decreasing=F),][1:10,]
# 行业的进退
data$Sector <- with(data,reorder(Sector,change,median))
p3 <- ggplot(data=data,aes(x=Sector,y=change))
p3 + stat_summary(fun.y=median,geom='bar',fill='deepskyblue') + coord_flip()
# 国家的进退
data$Country <- with(data,reorder(Country,change,median))
p4 <- ggplot(data=data,aes(x=Country,y=change))
p4 + stat_summary(fun.y=median,geom='bar',fill='deepskyblue') + coord_flip()
# 各变量之间的相关性
library(corrgram)
data3 <- data[,c(6:13,15)]
corrgram(order = T, data3, lower.panel = panel.shade, upper.panel = panel.pie)