2、“重塑架构”:以客户为中心的倒置经济体系
扎克伯格提出“重塑架构”的重要原则:我们希望通过帮助人们建立关系,重塑信息的传播和消费方式。我们认为,世界信息基础架构应当与社交图谱类似--它是一个自下而上的对等网络,而不是目前这种自上而下的单体结构。此外,让人们自主决定分享哪些内容,是重塑架构的基本原则。
这种重塑架构的基本原则,实际上对大数据的结构化具有指导意义。
在没有原则指导之下,大数据很可能在结构上是反的:仍然沿用传统的从生产者向消费者传导价值的结构,只是用新技术为老传统服务。这种服务虽然也是必要的,但却不是Faceboo时大数据的定位。
我们从扎克伯格的话中读出如下含义:
1)重塑架构意味着大数据将倒置经济结构
第一,“我们希望通过帮助人们建立关系,重塑信息的传播和消费方式”。重塑就是倒置,所谓倒置,就是颠倒价值生成的方向,原来是生产者到消费者,现在是消费者到生产者。这是从上到下,变为自下而上的第一重含义。
在SNS和搜索引擎这种倒置的经济结构中,价值的生成,不是从生产者到消费者,而是反过来,从消费者到生产者。消费者首先在SNS和搜索引 擎暴露(主动“生产”)消费意向信息,进入交换,使之形成抽象消费价值;第二步,由大数据对消费信息进行加工增值处理,相当于对消费进行资本化处理,使消费者主权象资本一样能够得到同样的获得剩余的待遇。
第二,“它是一个自下而上的对等网络,而不是目前这种自上而下的单体结构”。
传统经济和经济学,在生产与消费关系上,有一个重要的不对称。按“自生产这个上,到消费这个下”的顺序创造价值,生产者首先在商品和交换环节,将具体价值换化为抽象价值(交换价值);第二步,将一般价值,通过资本机制,进行增值放大。但是消费者却没有这样的权利和权力,一是不能把消费者的具体价值转化为抽象价值,二是不能对这个价值进行增值,即消费没有资本化过程。
大数据一旦走出就技术谈技术的原始阶段(2012-2014年),进入大数据同经济结合的中世纪阶段(大约2015年以后),人们就会发现,自下而上不光涉及信息传输,更关系到价值生成方式转变。变成通过大数据为消费者赋权的过程。我建议大家读读《公众风潮》和《创新推动者》这两本相反方 向赋权的书,理解这种赋权对经济生活的改变。
第三, “让人们自主决定分享哪些内容”。
这里提到一个重要的概念:“自主”。在工业化经济结构下,人失去自主性,最主要的一步,是自主劳动异化为劳动力,因此在信息化中,人们通过信息获得自主性的先提,是将人性的因素,复归到劳动力,形成“人性+劳动力:自主劳动”的效果。
扎克伯格由于历史局限,现在只是模模糊糊感到是在重塑消费方式,将来取代Facebook的小男生小女生,将需要把这一信息分享过程,深化为消费资本化过程。这将是大数据下一阶段(2018年以后)的课题。
在那个阶段,人们将开始普遍思考海尔前些年解决的未来型问题:通过“人单合一”直接经济模式,解决由消费者生成数据,倒过来决定生产(特别 是资本的战略结构的问题。现在美国管理会计师协会(IMA)暗暗盯住,并派人命名为ZEUS(宙斯)的海尔战略损益表,可能就透着资本化时期大数据的战略 秘密通道。我昨天还专门同信息化企业首倡者胡建生讨论它对BI的决定性影响。Facebook到那个阶段,不再进步,小命就堪忧了。
2)重塑架构意味着价值与意义的倒置
工业社会的价值结构,是从价值到意义,人们先围绕手段进行生产,然后再用目的对手段纠偏;信息社会的价值结构,是从意义到价值,通过SNS和搜索引擎定位意义所在,然后再根据意义去做有价值的事。
以往工业社会中,把握意义靠小农的方式。大数据要把意义,扩展为一个有数据结构的系统。在意义学研究中,这个结构要完成的任务,称为“意义的阐释”。这是一种读心术。大数据的体系结构,从主体意义角度看,就应该是读心术系统,是专业化地破除人类的斯芬克斯之谜的大系统。通过这样的生活操作系 统,使人类得到提升,从仅仅有价值,变成不仅有价值,而且有意义。使人类因为意义而获得更高的满足。
对于企业来说,道理也一样。关于从意义到价值这一决定方向,扎克伯格指出:在这一过程中,企业获得的益处是:他们能够制造更好的产品一一即以人为本的个性化产品。除了制造更好的产品,一个更加开放的世界还将鼓励企业与客户展开直接而可靠的互动。
这里说的以人为本及个性化,都是指意义所在;强调的是越过价值这个中间环节,实现生产者与消费者之间的“直接而可靠的互动”。用张瑞敏的话说,就是人单合一。
意义需要解释,解释必须通过意义的循环实现。
用扎克伯格的话说就是:它是一个自下而上的对等网络,而不是目前这种自上而下的单体结构。此外,让人们自主决定分享哪些内容。意义不是生产者(相当于作者)赋予的,而是通过消费者(相当于读者,即产品的接受者)赋予的。大数据系统通过意义在生产者与消费者之间的循环,实现价值与意义的统一,手段与目的的统一。
另一方面,大数据的结构化还有另一方面,就是打通意义的语形、语义和语用三个环节。斯芬克斯之谜层面的意义,是可意会不可言传的。通过 SNS这样的数据采集机制,形成的是意义的语形产业;接下来将形成语义产业,即对非结构化数据的加工产业链;最终形成语用产业,通过LBS、支付等手段, 将数据挖掘与具体的一个人一个人的情境,进行锚定。这样才能破解语言层面之下的个性化意义和体验的意义。从人工智能角度讲,Facebook的数据计算模 式有独特优点,它是人人计算,而非谷歌那种人机计算。人人计算,相当在对话中,人们互为搜索引擎,形成生态化的计算能力。这方面还存在很大的发展潜力。
3、大数据生产力发动机内部的探索
大数据作为新时代的生产力发动机,研究它的生产力特性,对于理解未来的商业狂潮,是一个基本功课。在大数据时代,对技术毫无感觉的人,很可能成为被狂奔的生产力战车拖来拖去的尸体。
连对技术一窍不通的资本人,已经注意到Facebook大数据结构中“海量数据+复杂数据类型”,非结构化数据等典型问题。事实上,这还没有涉及Hadoop、NoSQL、数据分析与挖掘、数据仓库、商业智能以及开源云计算架构等诸多基础性问题。
大数据大致的技术过程,是先以SNS、搜索引擎、POS机等采集器,将海量数据采集进数据仓库中,然后用分布式的技术框架(Hadoop),对非关系 型数据进行异质性处理(NoSQL),通过数据分析与挖掘,发展一对一的商业智能。由于大数据问题比较复杂,我现在有些个人想法,但考虑成熟之前,先不拿出来误导大家。我们还是先顺着Facebook的实践和见识,自下而上归纳。
Facebook在大数据这一行,也是显赫的主角之一。它在低成本整合海量数据方面,为大数据行内人士所称道。但目前Facebook的大数据战略在我看来,还没有完全定型,它主要集中发展的是内部数据管理这一块。
2011年12月FacebookSA布的Timeline,被认为是一款大数据产品。Timeline是用户自我编辑的个人时间轴,通俗 地讲,它实际就是个人的斯芬克斯之谜解答器。问一个人,你是谁,这是非常难以准确回答的。但如果一个从小到大跟你一长大的人,再遇到这样一个问题,脑子的反应的,正是这样一个Timeline。它比人事档案还档案。与人事档案的一个重要区别在于,它可以控制个人信息只给想展示的人。在数据挖掘帮助下,从理论上说,一个人可以在挑选皮鞋时,只展示一生中与皮鞋相关的历史,供第三方的生活方式设计师,替你一对一选鞋提供咨询建议用。
有了Timeline,就象扎克伯格说的,“自此,你的生活,全部都在网上了”。这里的生活,只是生活中与意义相关的部分,是数字化生存。即魂这一部分的生存。魂在生活整体中,是管钱包如何花钱的系统,是管四肢如何行动的系统,管住了一个人的魂,就把这个人的指挥权接管了。所以 Timeline也可称为人类勾魂系统。只是,Timeline太单薄了,将来下一代小男生小女生们会有更好的办法做这件事。
有了勾魂系统(即个人意义系统),把大量数据采集来,下一步难题是破解灵魂。正如分析家们判断的那样:“Facebook之前数年的努力让接近10亿数字移民建立了联系和纽带,这个世界的边界仍要扩张,而下一步更重要的则是考虑如何让关系产生的海量数据更有价值”。之前数年,在大数据这一行,Facebook干的相当于是采矿的,所以被误当作SNS;他自己实际上不以为然,下一步要转行做原料加工的(当然他霸住的SNS矿山,别人不挤他, 也没必然退出来)。
破解灵魂,在理论上叫意义阐释,必须突破以下几关,第一关是从结构化数据到非结构化数据这一关,结构化数据相当于把人简化为相关维度后的一堆数字,相当于把人挑掉有血有肉部分后剩下的骨头,菜市场里挂的猪骨架就相当于这种东西;非结构化数据,相当于自然语言,还包括广义文本、应用、位置信 息、图片、音乐、视频等等,它们相当于有血有肉的数据。处理结构化数据相当于处理不带肉的大腔肉,处理非结构化数据相当于处理有血有肉的排骨。当然价值要高得多。
目前大数据的攻关主力都在这个方向上。具体到Facebook,它的非结构化数据,主要集中用于可用性测试、眼动测试等,另外还有战略因素,用户需求,竞争产品,商业利益因素等分析重点。
第二关更难,是要从结构化数据,深入到数据背后的潜在意义,即灵魂中去。历史上弗洛依德干过这事,通过解析梦话,来解不可言说之梦。但是要在全社会规模上,对每一个人在时间上的每一历史记录,空间上的每200米卫星定位记录,支付中的每一笔水单收入,存储中的每一条文字,进行分析,以解开当事人本人都说不清楚的斯芬克斯之谜,以把他与其他人从个性上加以区分,进而对他进行北约空军式精确制导的一对一商业攻势,现在还有许多难题。
Facebook目前在这方面的探索,正处在活跃期。我们可以看出,它正沿着Face-Soul-book的顺序演进。第一步,SNs相当 于大数据的Face部分,在意义阐释学中,叫语形。即用SNS这个数据采矿机,偷听用户聊天,然后整理成结构化和非结构化数据。Facebook这方面的 突出成就,是通过Hadoop的开放架构,有效降低了采矿和分检成本。
第二步,要由表及里,从数据中分析出意义,其产业定位是服务加工,即Aaas(分析即服务,analytics-as-a-service)。也就是“灵魂深处闹革命”。
第三步,是形成book。中国古代传说中,人类在阴间有个册,阳间有个册。管的就是人的小命。Facebook把每个人的灵魂秘密掌握后, 记录成book,“Facebook'’这一步就完成了,扎克伯格就成为掌管人间命数的神。在京剧《铡判官》中,负责Big Data的官员叫张洪,由于擅自改写生死簿,被包公铡了。可见这个职位对人类是何等重要。
Facebook现在每天会采集到4TB的用户行为数据,他主要是通过瀑布式分析、追踪交互步骤的转化/流失率,大量的A/B testing,观测用户行为使用模式,优化界面交互和操作流。除了瀑布式的分析,Facebook数据还被用于回溯性式分析,优化页面。
比如,Facebook有一位设计师为了在用户即将注销Facebook的最后一刻,将其挽回,根据对用户数据的分析,找到他们内心想法的 规律,从而发起了注销页的改造,用情感化的方式打动人,成功将注销率降低了7%。从而在关键时期止住了Facebook的失血,使Facebook度过了 危险期。
Facebook的大数据,开了个好头,还在不断探索中,创新势头不错,还会不断给我们带来新的启发。但总的来看,对大数据这场长征来说,Facebook只是迈出第一步。
大数据本身的发展还需进一步定型。Facebook的大数据也还存在结构性问题,我觉得在纵深度上仍有不足。从现象上看,表现出的问题主要是Facebook收益来源单一,与这种结构缺陷有关。目前Facebook还局限在自己做大数据,如果能把产业链拉开,把外部开发者象苹果那样进一步调动起来,前途会更为远大。
作者:姜奇平
互联网周刊 2012年第10期