| y | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 |
2007 | 10539665 | 1246968 | 1845157 | 499056 | 1590145 | 217303 | 1000870 | 487998 | 584991 | 455968 |
2008 | 14285208 | 1365930 | 2649055 | 783906 | 2455574 | 318074 | 1462918 | 542268 | 867798 | 587158 |
2009 | 18416388 | 2260077 | 3109646 | 1258329 | 2870973 | 408872 | 2207212 | 1093997 | 970734 | 795011 |
2010 | 22188283 | 2239864 | 3777877 | 1566560 | 3156139 | 478599 | 2671563 | 1290573 | 1268445 | 828806 |
2011 | 29308100 | 2651629 | 5294599 | 1976141 | 3654323 | 612659 | 3337852 | 3134164 | 1471330 | 961304 |
这个是我的数据,想做多元线性回归,但是结果是这样的:
Variables Entered/Removed
Model
Variables Entered
Variables Removed
Method
1
VAR00010, VAR00008, VAR00004, VAR00009, VAR00005a
.
Enter
a. Tolerance = .000 limits reached.
Model Summaryc,d
Model
R
R Squareb
Adjusted R Square
Std. Error of the Estimate
1
1.000a
1.000
.
.
a. Predictors: VAR00010, VAR00008, VAR00004, VAR00009, VAR00005
b. For regression through the origin (the no-intercept model), R Square measures the proportion of the variability in the dependent variable about the origin explained by regression. This CANNOT be compared to R Square for models which include an intercept.
c. Dependent Variable: VAR00001
d. Linear Regression through the Origin
Coefficientsa,b
Model
Unstandardized Coefficients
Standardized Coefficients
B
Std. Error
Beta
t
Sig.
1
VAR00004
.337
.000
.022
.
.
VAR00005
-.902
.000
-.128
.
.
VAR00008
2.145
.000
.174
.
.
VAR00009
10.639
.000
.573
.
.
VAR00010
9.946
.000
.371
.
.
a. Dependent Variable: VAR00001
b. Linear Regression through the Origin
为什么有些指标被剔除掉了?