全部版块 我的主页
论坛 休闲区 十二区 跨学科讨论区 哲学与心理学版
9980 4
2013-07-27

人们期盼着能拥有并使用更为人性化和智能化的计算机。在人机交互中,从人操作计算机,变为计算机辅助人;从人围着计算机转,变为计算机围着人转;计算机从认知型,变为直觉型。显然,为实现这些转变,人机交互中的计算机应具有情感能力。情感计算研究就是试图创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。

一、情感计算的概念

科学研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。

情感计算的概念是在1997年由MIT媒体实验室Picard教授提出,她指出情感计算是与情感相关,来源于情感或能够对情感施加影响的计算。中国科学院自动化研究所的胡包刚等人也通过自己的研究,提出了对情感计算的定义:“情感计算的目的是通过赋予计算机识别、理解、表达和适应人的情感的能力来建立和谐人机环境,并使计算机具有更高的、全面的智能”。

二、情感计算的初始研究
    有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将感情和无生命的机器联系在一起。让计算机具有情感能力是由美国MIT大学Minsky1985年提出的,他认为:问题不在于智能机器能否有任何'情感,而在于机器实现智能时怎么能够没有情感。从此,赋予计算机情感能力并让计算机能够理解和表达情感的研究、探讨引起了计算机界许多人士的兴趣。美国MIT媒体实验室Picard教授提出情感计算一词Affective Computing并给出了定义,即情感计算是关于情感、情感产生以及影响情感万面的计算。让机器(计算机)也具备“感情”,从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向。

情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境。

三、情感计算的主要研究内容

情感计算是一个高度综合化的研究和技术领域。通过计算科学与心理科学、认知科学的结合,研究人与人交互、人与计算机交互过程中的情感特点,设计具有情感反馈的人与计算机的交互环境,将有可能实现人与计算机的情感交互。情感计算研究将不断加深对人的情感状态和机制的理解,并提高人与计算机界面的和谐性,即提高计算机感知情境,理解人的情感和意图,作出适当反应的能力,其主要研究内容包括:

1情感机理的研究。 对人的情感和认知的研究是一门交叉科学,其理论根源来自心理学、神经科学、计算机科学和人工智能等。目前虽然该领域在应用方面取得了许多进展(主要是在美国、日本和欧盟国家)、但是,由于情绪心理学理论方法的多样性,导致在基础理论与方法都不成熟,因而使得应用技术也受到了很大影响。目前在该研究领域中还有很多挑战,在计算机科学和人工智能的研究领域存在的问题主要包括:语音情感信息处理技术和表情识别技术的不成熟,成为制约人工情感与和谐人机交互技术发展的瓶颈;如何从多模态的角度进行情感信息的融合、识别与理解,实现自然和谐的人机交互平台环境等。对这些问题的研究是我们未来面临的主要挑战,也是我们的机遇。对情感计算的研究大致可以分为情感识别、情感建模和情感反应三大部分,这其中情感识别无疑是最基础,也是最重要的部分。情感机理的研究主要是情感状态判定及与生理和行为之间的关系。涉及到心理学、生理学、认知科学等,为情感计算提供理论基础。人类情感的研究己经是一个非常古老的话题,心理学家、生理学家己经在这方面做了大量的工作。任何一种情感状态都可能会伴随几种生理或行为特征的变化;而某些生理或行为特征也可能起因于数种情感状态。因此,确定情感状态与生理或行为特征之间的对应关系是情感计算理论的一个基本前提,这些对应关系目前还不十分明确,需要作进一步的探索和研究。

2情感信号的获取。情感信号的获取研究主要是指各类有效传感器的研制,它是情感计算中极为重要的环节,没有有效的传感器,可以说就没有情感计算的研究,因为情感计算的所有研究都是基于传感器所获得的信号。各类传感器应具有如下的基本特征:使用过程中不应影响用户(如重量、体积、耐压性等),应该经过医学检验对用户无伤害;数据的隐私性、安全性和可靠性;传感器价格低、易于制造等。MIT媒体实验室的传感器研制走在了前面,已研制出多种传感器,如脉压传感器、皮肤电流传感器、汗液传感器及肌电流传感器等。皮肤电流传感器可实时测量皮肤的导电系数,通过导电系数的变化可测量用户的紧张程度。脉压传感器可时刻监测由心动变化而引起的脉压变化。汗液传感器是一条带状物,可通过其伸缩的变化时刻监测呼吸与汗液的关系。肌电流传感器可以测得肌肉运动时的弱电压值。情感信号的获取必须通过一定形式的情感测量技术来完成,情感测量包括对情感维度、表情和生理指标三种成分的测量。例如,我们要确定一个人的焦虑水平,可以使用问卷测量其主观感受,通过记录和分析面部肌肉活动测量其面部表情,并用血压计测量血压,对血液样本进行化验,检测血液中肾上腺素水平等。确定情感维度对情感测量有重要意义,因为只有确定了情感维度,才能对情感体验做出较为准确的评估。情感维度具有两极性,例如,情感的激动性可分为激动和平静两极,激动指的是一种强烈的、外显的情感状态,而平静指的是一种平稳安静的情感状态。心理学的情感维度理论认为,几个维度组成的空间包括了人类所有的情感。但是,情感究竟是二维,三维,还是四维,研究者们并未达成共识。情感的二维理论认为,情感有两个重要维度:⑴愉悦度(也有人提出用趋近-逃避来代替愉悦度);⑵激活度,即与情感状态相联系的机体能量的程度。研究发现,惊反射可用做测量愉悦度的生理指标,而皮肤电反应可用做测量唤醒度的生理指标。

3情感信号的分析、建模与识别。一旦由各类有效传感器获得了情感信号,下一步的任务就是将情感信号与情感机理相应方面的内容对应起来,这里要对所获得的信号进行建模和识别。由于情感状态是一个隐含在多个生理和行为特征之中的不可直接观测的量,不易建模,部分可采用诸如隐马尔可夫模型、贝叶斯网络模式等数学模型。MIT媒体实验室给出了一个隐马尔可夫模型,可根据人类情感概率的变化推断得出相应的情感走向。研究如何度量人工情感的深度和强度的,定性和定量的情感度量的理论模型、指标体系、计算方法、测量技术。

4情感理解。通过对情感的获取、分析与识别,计算机便可了解其所处的情感状态。情感计算的最终目的是使计算机在了解用户情感状态的基础上,作出适当反应,去适应用户情感的不断变化。因此,这部分主要研究如何根据情感信息的识别结果,对用户的情感变化作出最适宜的反应。在情感理解的模型建立和应用中,应注意以下事项:情感信号的跟踪应该是实时的和保持一定时间记录的;情感的表达是根据当前情感状态、适时的;情感模型是针对于个人生活的并可在特定状态下进行编辑;情感模型具有自适应性;通过理解情况反馈调节识别模式。

5情感表达。前面的研究是从生理或行为特征来推断情感状态。情感表达则是研究其反过程,即给定某一情感状态,研究如何使这一情感状态在一种或几种生理或行为特征中体现出来,例如如何在语音合成和面部表情合成中得以体现,使机器具有情感,能够与用户进行情感交流。情感的表达提供了情感交互和交流的可能,对于单个用户来讲,情感的交流主要包括人与人、人与机、人与自然和人类自己的交互、交流。情感是一种内部的主观体验,但总是伴随着某种外部表现,即表情。面部表情、姿态表情、语调表情三种表情被称之为体语,构成了人类的非言语交往方式。面部表情是指通过眼部、颜面和口部肌肉的变化来表现各种情感状态。面部表情不仅是人们常用的较自然的表现情感的方式,也是人们鉴别情感的主要标志。研究表明,人脸的不同部位具有不同的表情作用,例如,眼睛对表达忧伤最重要,口部对表达快乐与厌恶最重要,前额能提供惊奇的信号,而眼睛、嘴和前额等对表达愤怒很重要。使用特定的仪器可以对面部的微小表情变化进行研究,甚至可以区分真笑和假笑:人在真笑时面颊上升,眼周围的肌肉堆起,大脑左半球的电活动增加;而人在假笑时仅有嘴唇的肌肉活动,下颚下垂,大脑左半球的电活动不明显。脸部运动编码系统FACS通过不同编码和运动单元的组合,可以在脸部形成复杂的表情变化,其成果已经被应用于人脸表情的自动识别与合成。还有MPEG-4 V2视觉标准,定义了3个重要的参数集,即人脸定义参数、人脸内插变换参数和人脸动画参数,其表情参数具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。目前面部表情的研究侧重于对三维图像的更细致的描述和建模,也注重使用复杂的纹理和较细致的图形变换算法,以达到生动的情感表达效果。

6情感生成。在情感表达基础上,进一步研究如何在计算机或机器人中,模拟或生成情感模式,开发虚拟或实体的情感机器人或具有人工情感的计算机及其应用系统的机器情感生成理论、方法和技术。

到目前为止,有关研究已经在人脸表情、姿态分析、语音的情感识别和表达方面获得了一定的进展。


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-7-27 11:33:34

   四、人机交互中的“情感计算”
  传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。
  1、情感也可计算? 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向。人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境。
  2、音容笑貌电脑解“风情” 。情感计算是一个高度综合化的技术领域。到目前为止,有关研究已经在人脸表情、姿态分析、语音的情感识别和表达方面获得了一定的进展。
  3、脸部表情。在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成。随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统。
  4、姿态变化。人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。
  5、语音理解。在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。
  6、多模态的情感计算。虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。。目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用。
  7、情感计算与个性化服务。随着情感计算研究的进一步深入,人们已经不仅仅满足于将其应用在简单的人机交互平台中,而要拓展到广泛的界面设计、心理分析、行为调查等各个方面,以提高服务的质量,并增加服务的个性化内容。在此基础上,有人开始专门进行情感智能体(Affective Agent)的研究,以期通过情感交互的行为模式,构筑一个能进行情感识别和生成的类生命体,并以这个模型代替传统计算中的有些应用模型中(例如电脑游戏的角色等),使电脑和应用程序更加鲜活起来,使之能够产生类似于人的一些行为或思维活动。这一研究还将从侧面上对人工智能的整体研究产生较大的推动作用。
  8、情感理解模型。情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。
  9、情感计算在日常生活。情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的图片能引起恐惧,而有大量美元现金和金块的图片则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。在远程教育平台中,情感计算技术的应用能增加教学效果。利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。
  10、情感计算对认知科学。此外,从认知科学的角度来看,情感反映了人们的心理状态,是人类思维活动最生动的体现。对人类情感机理的研究与探索一直是科学研究的重要方向,人类的智能不仅表现为正常的理性思维和逻辑推理能力,也应表现为正常的情感能力。情感计算理论通过计算机的分析和处理手段,将情感的研究从感性认知角度,上升为可计算模型,对在认知科学上探索大脑对信息的分析与处理的机理、进一步加深对大脑中情感概念的解析和理解将具有极其重要的科学意义。情感计算的研究是面向和谐的人机交互领域中不可或缺的重要内容,也是人工智能研究领域极具挑战性的课题。
  11、情感计算面临的挑战。由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:更加细致和准确的情感信息获取、描述及参数化建模;多模态的情感识别、理解和表达(图像、语音、生理特征等);自然场景对生理和行为特征的影响;更加适用的机器学习算法;海量的情感数据资源库。
   五、“情感计算”的研究动态
  目前人工智能的研究发展已经达到了较高的水平,同时它的研究内容也在逐步扩展和延伸。对人的情感和认知的研究是人工智能的高级阶段,它的研究将会大大促进拟人控制理论、情感机器人、人性化的商品设计和市场开发等方面的进展,为最终营造一个人与人、人与机器和谐的社会环境做出贡献。心理学家认为,人工智能下一个重大突破性的发展可能来自与其说赋予机器更多的逻辑智能,倒不如说赋予计算机更多的情感智能。对人的情感和认知的研究是在人工智能理论框架下的一个质的进步。因为从广度上讲它扩展并包容了感情智能,从深度上讲感情智能在人类智能思维与反应中体现了一种更高层次的智能。对人的情感和认知的研究必将为计算机的未来应用展现一种全新的方向。在这个领域的研究中主要包括情感计算(Affective Computing)、人工心理(Artificail Psychology)和感性工学(Kansei Engineering)等。
   1、日本的研究动态。日本从上世纪九十年代就开始了感性工学(Kansei Engineering)的研究。所谓感性工学就是将感性与工程结合起来的技术,是在感性科学的基础上,通过分析人类的感性,把人的感性需要加入到商品设计、制造中去,它是一门从工程学的角度实现能给人类带来喜悦和满足的商品制造的技术科学[4]。日本已经形成举国研究感性工学的高潮。1996年日本文部省就以国家重点基金的方式开始支持“情感信息的信息学、心理学研究”的重大研究课题,参加该项目的有十几个大学和研究单位,主要目的是把情感信息的研究从心理学角度过渡到心理学、信息科学等相关学科的交叉融合。每年都有日本感性工学全国大会召开。与此同时,一向注重经济利益的日本,在感性工学产业化方面取得了很大成功。日本各大公司竞相开发、研究、生产了所谓的个人机器人(Personal Robot)产品系列。其中,以SONY公司的AIBO机器拘(已经生产6万只,获益近10亿美元)和QRIO型以及SDR-4X型情感机器人为典型代表。日本新开发的情感机器人取名“小IF”,可从对方的声音中发现感情的微妙变化,然后通过自己表情的变化在对话时表达喜怒哀乐,还能通过对话模仿对方的性格和癖好。
   2、欧盟的研究动态。欧盟国家也在积极地对情感信息处理技术(表情识别、情感信息测量、可穿戴计算等)进行研究。欧洲许多大学成立了情感与智能关系的研究小组。其中比较著名的有:日内瓦大学 Klaus Soberer领导的情绪研究实验室。布鲁塞尔自由大学的D. Canamero领导的情绪机器人研究小组以及英国伯明翰大学的A. Sloman领导的 Cognition and Affect Project。在市场应用方面,德国Mehrdad Jaladi-Soli等人在2001年提出了基于EMBASSI系统的多模型购物助手。EMBASSI是由德国教育及研究部(BMBF)资助并由20多个大学和公司共同参与的,以考虑消费者心理和环境需求为研究目标的网络型电子商务系统。英国科学家已研发出名为“灵犀机器人”(Heart Robot)的新型机器人,这是一种弹性塑胶玩偶,其左侧可以看到一个红色的“心”,而它的心脏跳动频率可以变化,通过程式设计的方式,让机器人可对声音、碰触与附近的移动产生反应。
   3、美国的研究动态。美国MIT展开了对“情感计算”的研究,IBM公司开始实施“蓝眼计划”和开发“情感鼠标”;2008年4月美国麻省理工学院的科学家们展示了他们最新开发出的情感机器人“Nexi”,该机器人不仅能理解人的语言,还能够对不同语言做出相应的喜怒哀乐反应,还能够通过转动和睁闭眼睛、皱眉、张嘴、打手势等形式表达其丰富的情感。这款机器人完全可以根据人面部表情的变化来做出相应的反应。它的眼睛中装备有CCD(电荷耦合器件)摄像机,这使得机器人在看到与它交流的人之后就会立即确定房间的亮度并观察与其交流者的表情变化。美国人工智能协会(AAAI)在1998,1999和2004年连续组织召开专业的学术会议对人工情感和认知进行研讨。
  4、国内的研究现状。我国对人工情感和认知的理论和技术的研究始于20世纪90年代,大部分研究工作是针对人工情感单元理论与技术的实现。哈尔滨工业大学研究多功能感知机,主要包括表情识别、人脸识别、人脸检测与跟踪、手语识别、手语会成、表情合成、唇读等内容,并与海尔公司合作研究服务机器人。清华大学进行了基于人工情感的机器人控制体系结构的研究。北京交通大学进行多功能感知机和情感计算的融合研究。中国科学院自动比研究所主要研究基于生物特征的身份验证。中科院心理学所、生物所主要注重情绪心理学与生理学关系的研究。中国科技大学开展了基于内容的交互式感性图像检索的研究。中国科学院软件所主要研究智能用户界面。浙江大学研究虚拟人物及情绪系统构造等。在国内,走在情感计算技术领域前列的中国科学院自动化研究所,正在为其模式识别国家重点室投入巨资,从美国引进运动捕获系统、三维扫描仪等设备和相关的软件,以加快情感计算技术的步伐,并通过各种平台向嵌入式终端、游戏平台、个性化网页服务等应用领域转化。人工心理理论是由中国北京科技大学教授、中国人工智能学会人工心理与人工情感专业委员会主任王志良教授提出的。他指出,人工心理就是利用信息科学的手段,对人的心理活动(着重是人的情感、意志、性格、创造)的更全面再一次人工机器(计算机、模型算法等)模拟,其目的在于从心理学广义层次上研究人工情感、情绪与认知、动机与情绪的人工机器实现的问题。
   5、国内的学术会议。为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,2003年12月在北京主办了第一届中国情感计算与智能交互学术会议。国内外的著名学者云集,交流了该领域发展的最新信息,其中共收到的约81篇论文涉及到:脸部表情处理、情感计算建模方法、情感语音、姿态处理、情感与其他学科的分析、自然人机界面、情感机器人、可穿戴式计算、应用与系统等相关内容。与会者普遍对情感计算与智能交互的研究价值和应用前景给予了更高的肯定,并认为该领域技术将在信息经济时代的需求越来越迫切。2005年10月在北京又召开了第一届情感计算和智能交互国际学术会议,集合了世界一流的情感计算、人工情绪和人工心理研究的著名专家学者。这说明我国的人工情感和人工心理的研究在逐步展开并向国际水平看齐。事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-27 11:34:00

   六、“情感计算”的挑战与机遇
   目前情感计算研究面临的挑战是多方面的:⑴情感信息的获取与建模,例如,细致和准确的情感信息获取、描述及参数化建模,海量的情感数据资源库,多特征融合的情感计算理论模型;⑵情感识别与理解,例如,多模态的情感识别和理解;⑶情感表达,例如,多模态的情感表达(图像、语音、生理特征等),自然场景对生理和行为特征的影响;⑷自然和谐的人性化和智能化的人机交互的实现,例如,情感计算系统需要将大量广泛分布的数据整合,然后再以个性化的方式呈现给每个用户。显然,为解决上述问题,我们需要知道人是如何感知环境的,人会产生什么样的情感和意图,人如何作出恰当的反应。而人类的情感交流是个非常复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。因此,在人和计算机的交互过程中,计算机需要捕捉关键信息,识别使用者的情感状态,觉察人的情感变化,利用有效的线索选择合适的使用者模型(依据使用者的操作方式、表情特点、态度喜好、认知风格、知识背景等构建的模型),并对使用者情感变化背后的意图形成预期,进而激活相应的数据库,及时主动地提供使用者需要的新信息。
  目前,计算智能领域“百花齐放”,进化计算、遗传算法、混沌理论、粗集理论、情感计算、免疫计算等研究方兴未艾。不少人都翘首以盼,计算机会变得越来越聪明,在不久的将来,电脑就能像人一样具有情感,与人进行自然、亲切和生动的智能交互。
  情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。在信息检索中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。在电子商务领域,在设计购物网站和股票交易网站等时能充分利用人的情感因素的作用,以改变客流量。多模式的情感交互技术能构筑更贴近人们生活的智能空间或虚拟场景,而机器人、智能玩具、游戏等产业则能构筑出更加拟人化的风格和更加逼真的场景。
  展望现代科技的潜力,我们预期在未来的世界中将可能会充满运作良好、操作容易、甚至具有情感特点的计算机。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-7-27 11:46:26
有意思。
情感计算机应用是不是应该算物联网的一部分?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-11-18 23:51:26
正在和导师做情感分析 网络评价这块   可以借鉴一下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群