全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
2758 4
2013-08-01
请问有没有哪位大神对optim函数比较熟悉的啊?跪求指导呀!万分感谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-8-1 11:00:27
90后?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-8-2 15:53:52
nuomin 发表于 2013-8-1 11:00
90后?
是滴,请问你对这个函数熟悉吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-8-3 15:46:12
ZJ19900420 发表于 2013-8-2 15:53
是滴,请问你对这个函数熟悉吗?
谷歌搜 optim in r,有很好的例子
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-8-3 17:41:08
http://www.r-bloggers.com/how-to-use-optim-in-r/

How to use optim in R
March 12, 2013
By Markus Gesmann

(This article was first published on mages' blog, and kindly contributed to R-bloggers)
A friend of mine asked me the other day how she could use the function optim in R to fit data. Of course there are functions for fitting data in R and I wrote about this earlier. However, she wanted to understand how to do this from scratch using optim.

The function optim provides algorithms for general purpose optimisations and the documentation is perfectly reasonable, but I remember that it took me a little while to get my head around how to pass data and parameters to optim. Thus, here are two simple examples.

I start with a linear regression by minimising the residual sum of square and discuss how to carry out a maximum likelihood estimation in the second example.

Minimise residual sum of squares
I start with an x-y data set, which I believe has a linear relationship and therefore I'd like to fit y against x by minimising the residual sum of squares.
dat=data.frame(x=c(1,2,3,4,5,6),
               y=c(1,3,5,6,8,12))
Next, I create a function that calculates the residual sum of square of my data against a linear model with two parameter. Think of y = par[1] + par[2] * x.
min.RSS <- function(data, par) {
              with(data, sum((par[1] + par[2] * x - y)^2))
             }
Optim minimises a function by varying its parameters. The first argument of optim are the parameters I'd like to vary, par in this case; the second argument is the function to be minimised, min.RSS. The tricky bit is to understand how to apply optim to your data. The solution is the ... argument in optim, which allows me to pass other arguments through to min.RSS, here my data. Therefore I can use the following statement:
result <- optim(par = c(0, 1), min.RSS, data = dat)
# I find the optimised parameters in result$par
# the minimised RSS is stored in result$value
result
## $par
## [1] -1.267  2.029
##
## $value
## [1] 2.819
##
## $counts
## function gradient
##       89       NA
##
## $convergence
## [1] 0
##
## $message
## NULL
Let me plot the result:
plot(y ~ x, data = dat)
abline(a = result$par[1], b = result$par[2], col = "red")

Read more »
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群