全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
3503 12
2013-09-02
PDF; High Definition; 2013 Edition;[size=14.399999618530273px]This book is a course on real analysis (measure and integration theory plus additional topics) designed for beginning graduate students. Its focus is on helping the student pass a preliminary or qualifying examination for the Ph.D. degree.

Richard Franklin Bass is an American mathematician, the Board of Trustees Distinguished Professor of Mathematics at the University of Connecticut.[1] He is known for his work in probability theory.

Bass earned his Ph.D. from the University of California, Berkeley in 1977 under the supervision of Pressley Millar.[2] He taught at theUniversity of Washington before moving to Connecticut.

Bass is a fellow of the Institute of Mathematical Statistics.[3] In 2012 he became a fellow of the American Mathematical Society.[4]






附件列表

rags010213.pdf

大小:1.28 MB

只需: 5 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2013-9-2 21:58:40
这个能否提前贴个什么出来啊,作者,或者介绍?目录?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-9-2 22:07:48
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-9-2 22:09:16
如果是http://www.amazon.com/Analysis-G ... r+Graduate+Students
这本的话

This book is a course on real analysis (measure and integration theory plus additional topics) designed for beginning graduate students. Its focus is on helping the student pass a preliminary or qualifying examination for the Ph.D. degree.

418 pages,而且2013年1月才出的
8刀。这个价格值了。。。
1 Preliminaries 1
1.1 Notation and terminology . . . . . . . . . . . . . 1
1.2 Some undergraduate mathematics . . . . . . . . . 2
2 Families of sets 7
2.1 Algebras and -algebras . . . . . . . . . . . . . . 7
2.2 The monotone class theorem . . . . . . . . . . . . 10
2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . 11
3 Measures 13
3.1 De nitions and examples . . . . . . . . . . . . . . 13
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 16
4 Construction of measures 19
4.1 Outer measures . . . . . . . . . . . . . . . . . . . 20
4.2 Lebesgue-Stieltjes measures . . . . . . . . . . . . 24
4.3 Examples and related results . . . . . . . . . . . . 27
4.4 Nonmeasurable sets . . . . . . . . . . . . . . . . . 30
4.5 The Caratheodory extension theorem . . . . . . . 31
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . 34
5 Measurable functions 37
5.1 Measurability . . . . . . . . . . . . . . . . . . . . 37
5.2 Approximation of functions . . . . . . . . . . . . 41
5.3 Lusin's theorem . . . . . . . . . . . . . . . . . . . 42
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 44
6 The Lebesgue integral 47
6.1 De nitions . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 49
7 Limit theorems 51
7.1 Monotone convergence theorem . . . . . . . . . . 51
7.2 Linearity of the integral . . . . . . . . . . . . . . . 52
7.3 Fatou's lemma . . . . . . . . . . . . . . . . . . . . 54
7.4 Dominated convergence theorem . . . . . . . . . . 55
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 56
8 Properties of Lebesgue integrals 63
8.1 Criteria for a function to be zero a.e. . . . . . . . 63
8.2 An approximation result . . . . . . . . . . . . . . 65
8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . 66
9 Riemann integrals 69
9.1 Comparison with the Lebesgue integral . . . . . . 69
9.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 71
10 Types of convergence 75
10.1 De nitions and examples . . . . . . . . . . . . . . 75
10.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 78
11 Product measures 81
11.1 Product -algebras . . . . . . . . . . . . . . . . . 81
11.2 The Fubini theorem . . . . . . . . . . . . . . . . . 85
11.3 Examples . . . . . . . . . . . . . . . . . . . . . . . 87
11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 88
12 Signed measures 93
12.1 Positive and negative sets . . . . . . . . . . . . . 93
12.2 Hahn decomposition theorem . . . . . . . . . . . 95
12.3 Jordan decomposition theorem . . . . . . . . . . . 97
12.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 97
13 The Radon-Nikodym theorem 99
13.1 Absolute continuity . . . . . . . . . . . . . . . . . 99
13.2 The main theorem . . . . . . . . . . . . . . . . . . 100
13.3 Lebesgue decomposition theorem . . . . . . . . . 103
13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 104
14 Di erentiation 107
14.1 Maximal functions . . . . . . . . . . . . . . . . . 108
14.2 Antiderivatives . . . . . . . . . . . . . . . . . . . 112
14.3 Bounded variation . . . . . . . . . . . . . . . . . . 113
14.4 Absolutely continuous functions . . . . . . . . . . 119
14.5 Approach 2 { di erentiability . . . . . . . . . . . 121
14.6 Approach 2 { antiderivatives . . . . . . . . . . . . 125
14.7 Approach 2 { absolute continuity . . . . . . . . . 126
14.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . 128
15 Lp spaces 131
15.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . 131
15.2 Completeness . . . . . . . . . . . . . . . . . . . . 134
15.3 Convolutions . . . . . . . . . . . . . . . . . . . . . 136
15.4 Bounded linear functionals . . . . . . . . . . . . . 137
15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 141
16 Fourier transforms 147
16.1 Basic properties . . . . . . . . . . . . . . . . . . . 147
16.2 The inversion theorem . . . . . . . . . . . . . . . 150
16.3 The Plancherel theorem . . . . . . . . . . . . . . 154
16.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 155
17 Riesz representation 157
17.1 Partitions of unity . . . . . . . . . . . . . . . . . . 158
17.2 The representation theorem . . . . . . . . . . . . 159
17.3 Regularity . . . . . . . . . . . . . . . . . . . . . . 163
17.4 Bounded linear functionals . . . . . . . . . . . . . 164
17.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 167
18 Banach spaces 171
18.1 De nitions . . . . . . . . . . . . . . . . . . . . . . 171
18.2 The Hahn-Banach theorem . . . . . . . . . . . . . 172
18.3 Baire's theorem and consequences . . . . . . . . . 175
18.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 178
19 Hilbert spaces 183
19.1 Inner products . . . . . . . . . . . . . . . . . . . . 183
19.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . 186
19.3 Orthonormal sets . . . . . . . . . . . . . . . . . . 188
19.4 Fourier series . . . . . . . . . . . . . . . . . . . . 191
19.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 194
20 Topology 197
20.1 De nitions . . . . . . . . . . . . . . . . . . . . . . 197
20.2 Compactness . . . . . . . . . . . . . . . . . . . . . 205
20.3 Tychono 's theorem . . . . . . . . . . . . . . . . 206
20.4 Compactness and metric spaces . . . . . . . . . . 210
20.5 Separation properties . . . . . . . . . . . . . . . . 217
20.6 Urysohn's lemma . . . . . . . . . . . . . . . . . . 219
20.7 Tietze extension theorem . . . . . . . . . . . . . . 222
20.8 Urysohn embedding theorem . . . . . . . . . . . . 223
20.9 Locally compact Hausdor spaces . . . . . . . . . 225
20.10 Stone-Cech compacti cation . . . . . . . . . . . . 226
20.11 Ascoli-Arzela theorem . . . . . . . . . . . . . . . . 227
20.12 Stone-Weierstrass theorems . . . . . . . . . . . . . 230
20.13 Connected sets . . . . . . . . . . . . . . . . . . . . 236
20.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . 240
21 Probability 247
21.1 De nitions . . . . . . . . . . . . . . . . . . . . . . 247
21.2 Independence . . . . . . . . . . . . . . . . . . . . 252
21.3 Weak law of large numbers . . . . . . . . . . . . . 256
21.4 Strong law of large numbers . . . . . . . . . . . . 258
21.5 Conditional expectation . . . . . . . . . . . . . . 262
21.6 Martingales . . . . . . . . . . . . . . . . . . . . . 265
21.7 Weak convergence . . . . . . . . . . . . . . . . . . 272
21.8 Characteristic functions . . . . . . . . . . . . . . . 277
21.9 Central limit theorem . . . . . . . . . . . . . . . . 285
21.10 Kolmogorov extension theorem . . . . . . . . . . 287
21.11 Brownian motion . . . . . . . . . . . . . . . . . . 289
21.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . 293
22 Harmonic functions 303
22.1 De nitions . . . . . . . . . . . . . . . . . . . . . . 303
22.2 The averaging property . . . . . . . . . . . . . . . 304
22.3 Maximum principle . . . . . . . . . . . . . . . . . 307
22.4 Smoothness of harmonic functions . . . . . . . . . 308
22.5 Poisson kernels . . . . . . . . . . . . . . . . . . . 311
22.6 Harnack inequality . . . . . . . . . . . . . . . . . 314
22.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . 315
23 Sobolev spaces 317
23.1 Weak derivatives . . . . . . . . . . . . . . . . . . 317
23.2 Sobolev inequalities . . . . . . . . . . . . . . . . . 318
23.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . 322
24 Singular integrals 325
24.1 Marcinkiewicz interpolation theorem . . . . . . . 325
24.2 Maximal functions . . . . . . . . . . . . . . . . . 329
24.3 Approximations to the identity . . . . . . . . . . 330
24.4 The Calderon-Zygmund lemma . . . . . . . . . . 334
24.5 Hilbert transform . . . . . . . . . . . . . . . . . . 336
24.6 Lp boundedness . . . . . . . . . . . . . . . . . . . 340
24.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . 346
25 Spectral theory 349
25.1 Bounded linear operators . . . . . . . . . . . . . . 349
25.2 Symmetric operators . . . . . . . . . . . . . . . . 353
25.3 Compact symmetric operators . . . . . . . . . . . 355
25.4 An application . . . . . . . . . . . . . . . . . . . . 361
25.5 Spectra of symmetric operators . . . . . . . . . . 363
25.6 Spectral resolution . . . . . . . . . . . . . . . . . 371
25.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . 377
26 Distributions 381
26.1 De nitions and examples . . . . . . . . . . . . . . 381
26.2 Distributions supported at a point . . . . . . . . . 384
26.3 Distributions with compact support . . . . . . . . 388
26.4 Tempered distributions . . . . . . . . . . . . . . . 390
26.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 392

从目录就知道了,特点是广,证明啥的,基本的都囊括了,练习题也不少(没有答案),缺点就是,都不是很深入。考qualifying exams(进去PHD项目后1~2年内的考试)比较不错了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-9-2 23:34:48
看看
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-9-3 00:26:37
Real Analysis for Graduate Students
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群