[1] Yang Zhe,Pu Yong Jian,Essential Stability of Solutions for Maximal Element Theorem with Applications, J Optim Theory Appl (SCI),2011, 150(2): 284—297.
[2] Yang Zhe,Pu Yong Jian,Existence and stability of minimax regret equilibria,J Glob Optim,(SCI), 2012,54(1): 17-26.
[3] Yang Zhe,Pu Yong Jian,Existence and Stability of Solutions for Maximal Element Theorem on Hadamard Manifolds with Applications. Nonlinear Analysis Series A: Theory, Methods & Applications (SCI), 2012, 75(2), 516—525.
[4] Pu Yong Jian,Yang Zhe,Stability of solutions for variational relation problems with applications . Nonlinear Analysis Series A: Theory, Methods & Applications (SCI), 2012, 75(4), 1758—1767.
[5] Yang Zhe,Pu Yong Jian,On existence and essential components for solution set for system of strong vector quasi-equilibrium problems,J Glob Optim,(SCI), 2013, 55(2) ,253-259.
[6] Yang Zhe,Pu Yong Jian,Generalized Knaster-Kuratowski-Mazurkiewicz Theorem without Convex Hull, J Optim Theory Appl (SCI),July 2012, Volume 154, Issue 1, pp 17-29..
[7] Yang Zhe,Pu Yong Jian,Generalized Browder-type fixed point theorem with strongly geodesic convexity on Hadamard manifolds with applications,Indian Journal of Pure and Applied Mathematics,April 2012, Volume 43, Issue 2, pp 129-144
[8] Pu Yong Jian,Yang Zhe,Variational Relation Problems without the KKM Property with Applications, Journal of Mathematical Analysis and Applications,393 (2012) 256—264.
[9] 杨哲,蒲勇健,不确定性下多目标博弈中弱Pareto—NS均衡的存在性,系统工程理论与实践 (EI核心),2013 Vol. 33 (3): 660-665.
[10] 杨哲,蒲勇健,不确定性下多主从博弈中均衡的存在性,控制与决策(EI核心), 2012 Vol. 27 (5): 736-740.
[11] 杨哲,蒲勇健,大博弈中Nash均衡的存在性,系统科学与数学(CSCD核心),2010,12,1606-1612.
[12] 蒲勇健,杨哲,轻微利他弱Pareto-Nash均衡,系统科学与数学(CSCD核心),2010,9,1259-1266.
[13] 蒲勇健,杨哲,多目标大博弈中弱Pareto-Berg均衡的存在性,系统科学与数学(CSCD核心),31(12) (2011, 12), 1613–1621.
[14] 杨哲,蒲勇健,广义不确定下广义多目标博弈弱Pareto-Nash均衡点集的存在性与本质连通区,系统科学与数学(CSCD核心),32(1) (2012, 1), 70–78.
[15] 杨哲,蒲勇健,利他扰动与Nash均衡点集的利他稳定性,经济数学(CSCD),2011,28(4), 6-9.
[16] 杨哲,蒲勇健,广义不确定性下广义博弈中 NS均衡的存在性,中国管理科学.已录用
[17] 杨哲,蒲勇健,单主多从博弈中中级社会 Nash均衡的存在性与应用,系统科学与数学.已录用