<An Introduction to Neural Networks><br/><br/>CONTENTS<br/><br/>Preface<br/><br/>I FUNDAMENTALS<br/>1 Introduction<br/>2 Fundamentals<br/> 2.1 A framework for distributed representation<br/> 2.1.1 Processing units<br/> 2.1.2 Connections between units<br/> 2.1.3 Activation and output rules<br/> 2.2 Network topologies<br/> 2.3 Training of arti_cial neural networks<br/> 2.3.1 Paradigms of learning<br/> 2.3.2 Modifying patterns of connectivity<br/> 2.4 Notation and terminology<br/> 2.4.1 Notation<br/> 2.4.2 Terminology<br/><br/>II THEORY<br/>3 Perceptron and Adaline<br/> 3.1 Networks with threshold activation functions<br/> 3.2 Perceptron learning rule and convergence theorem<br/> 3.2.1 Example of the Perceptron learning rule<br/> 3.2.2 Convergence theorem<br/> 3.2.3 The original Perceptron<br/> 3.3 The adaptive linear element (Adaline)<br/> 3.4 Networks with linear activation functions the delta rule<br/> 3.5 Exclusive-OR problem<br/> 3.6 Multi-layer perceptrons can do everything<br/> 3.7 Conclusions<br/>4 Back-Propagation<br/> 4.1 Multi-layer feed-forward networks<br/> 4.2 The generalised delta rule<br/> 4.2.1 Understanding back-propagation<br/> 4.3 Working with back-propagation <br/> 4.4 An example <br/> 4.5 Other activation functions <br/> 4.6 De_ciencies of back-propagation <br/> 4.7 Advanced algorithms <br/> 4.8 How good are multi-layer feed-forward networks?<br/> 4.8.1 The e_ect of the number of learning samples <br/> 4.8.2 The e_ect of the number of hidden units <br/> 4.9 Applications <br/>5 Recurrent Networks<br/> 5.1 The generalised delta-rule in recurrent networks <br/> 5.1.1 The Jordan network<br/> 5.1.2 The Elman network<br/> 5.1.3 Back-propagation in fully recurrent networks <br/> 5.2 The Hop_eld network <br/> 5.2.1 Description<br/> 5.2.2 Hop_eld network as associative memory <br/> 5.2.3 Neurons with graded response <br/> 5.3 Boltzmann machines <br/>6 Self-Organising Networks<br/> 6.1 Competitive learning <br/> 6.1.1 Clustering<br/> 6.1.2 Vector quantisation<br/> 6.2 Kohonen network<br/> 6.3 Principal component networks<br/> 6.3.1 Introduction <br/> 6.3.2 Normalised Hebbian rule <br/> 6.3.3 Principal component extractor<br/> 6.3.4 More eigenvectors<br/> 6.4 Adaptive resonance theory<br/> 6.4.1 Background Adaptive resonance theory<br/> 6.4.2 ART1 The simpli_ed neural network model<br/> 6.4.3 ART1 The original model<br/>7 Reinforcement learning<br/> 7.1 The critic<br/> 7.2 The controller network<br/> 7.3 Barto's approach the ASE-ACE combination<br/> 7.3.1 Associative search<br/> 7.3.2 Adaptive critic <br/> 7.3.3 The cart-pole system<br/> 7.4 Reinforcement learning versus optimal control<br/><br/>III APPLICATIONS<br/>8 Robot Control<br/> 8.1 End-e_ector positioning<br/> 8.1.1 Camera{robot coordination is function approximation<br/> 8.2 Robot arm dynamics<br/> 8.3 Mobile robots<br/> 8.3.1 Model based navigation<br/> 8.3.2 Sensor based control<br/>9 Vision<br/> 9.1 Introduction<br/> 9.2 Feed-forward types of networks<br/> 9.3 Self-organising networks for image compression<br/> 9.3.1 Back-propagation<br/> 9.3.2 Linear networks<br/> 9.3.3 Principal components as features<br/> 9.4 The cognitron and neocognitron <br/> 9.4.1 Description of the cells<br/> 9.4.2 Structure of the cognitron<br/> 9.4.3 Simulation results<br/> 9.5 Relaxation types of networks<br/> 9.5.1 Depth from stereo<br/> 9.5.2 Image restoration and image segmentation<br/> 9.5.3 Silicon retina<br/><br/>IV IMPLEMENTATIONS<br/>10 General Purpose Hardware<br/> 10.1 The Connection Machine<br/> 10.1.1 Architecture<br/> 10.1.2 Applicability to neural networks<br/> 10.2 Systolic arrays<br/>11 Dedicated Neuro-Hardware<br/> 11.1 General issues<br/> 11.1.1 Connectivity constraints<br/> 11.1.2 Analogue vs. digital<br/> 11.1.3 Optics<br/> 11.1.4 Learning vs. non-learning<br/> 11.2 Implementation examples<br/> 11.2.1 Carver Mead's silicon retina<br/> 11.2.2 LEP's LNeuro chip<br/><br/>References<br/><br/>Index<br/><br/>
http://down8931.pinggu.org/UploadFile_20082009/2008-10/200810120505383402.pdf<br/>
[此贴子已经被作者于2008-10-12 1:04:31编辑过]