2.4 成功的秘诀
人们经常问我有什么秘诀,因为我们不是这世界上唯一一个做数量分析的公司,我们不是唯一一个通过建模来交易的公司,我刚刚批判性地评价了一些运用模型交易的公司。我们公司显然运行得比其他的公司要更好,我们的确创下了很多交易方面的记录。
人们总是在问,到底是什么秘诀?当然是有秘诀的,我当然不会告诉你们各种预测性的参量等等,那些比如说 ……不,我不会告诉你们的,那是他们研究的东西。但是,真正地诀窍其实是,我们的起点是一群一流的科学家,他们完成的是一流的工作。因为我们公司一开始就围绕一些非常优秀的科学家创建,他们都是经过相应考核的,也一直和公司在一起。第二个方面就是我们给我们的员工提供非常好的基础设施,一直有人告诉我他们从来没见过一个比在我们公司工作更方便的公司了,那些数据的寻找都异常的方便。下面这里坐着我们的一位校友,我之前刚见过,虽然我不会建议他这么做,但是如果他想要的话,他可以去试一试我们的系统。而我认为最重要的就是我们保持着一个开放的氛围,我认为做大规模研究的最好方法就是尽可能地确保每个人都知道其他人在做什么,至少是做到越快让大家知道越好。有的时候你可能有一个想法想自己保留,但是很快你就觉得不想让自己看上去像个白痴一样,越快越好,开始告诉其他人你在干什么,因为那样才能最快地刺激你一些事情,没有分隔,没有小集体。比如说,认为是我们几个人建立的系统,我们应该得到相应的回报,这一类的事情决不会发生。每个星期我们的研究员就会聚一次,讨论新的想法,而且最好是能够用到实践当中去的想法。所以这是一个宽松的,开放的环境,你的工资是基于公司整体利润的,而不是根据你个人自己的工作的,每个人的工资都给来自于任何一个其他人的成功。不过没有任何一项政策能单独使效果达到最好,而是需要所有政策都能成功地结合在一起。出色的员工,很棒的基础设施,开放的环境,并且尽量让每个人据整体的表现获得薪资。这个方法很有效,而且将一直有效,并且靠着它我们赚了很多钱,足够多的钱。
三、成功之后的忙碌-慷慨的慈善家
3.1 创建基金会,支持基础科学研究及跨学科研究
之后我们创建了一个基金会,是我的妻子和我在 1994 年创立的,刚开始只是以她的化妆间为办公室,是吗?(问台下他的妻子)有一个小盒子,还有很大的文件夹。她的化妆间不大,那是个总部,后面逐渐地向外扩展。她先雇了一些人,然后又招了更多的人。因此我们有了一个基金会,而且在很快地扩大,不仅仅是从我们给出的钱的数量上来讲,也从机构运作的成熟程度上来讲。这非常好,我的第一份职业是一个数学家,我的第二分职业是成为一个商人,我的第三个职业从某种意义上讲是做一个慈善家。那我们的基金会都做些什么呢?我想我们的基金会是少数几个几乎完全对基础科学做投资的基金会之一。我们支持基础数学,基础物理,还有很多生物方面研究,但是最普遍的是一些跨学科的研究。我们有一个研究自闭症的项目,非常的有意思,它尝试着用电脑从基因方面来分析这种情况,以发现不正常的大脑是怎样工作的。所以我们主要集中于基础科学研究方面,玛丽莲和我都认为这么做很好。我们同样也做其他的事情,但是其他的事是小规模的。如果单从对基础科学的投资规模上讲,应该还没有一个基金的规模能够与我们相比。首先,我们给相关机构提供钱,我们帮助MIT提供资金给我们数学系的教授做科研。但是最近几年我们更加集中于建立数学,物理学和生命科学之间的桥梁,以及事件研究机构等,这些都对我们很重要,自闭症的研究也很重要。现在我们更加注重于数学和物理学研究,关注个人项目。MIT 在理论计算机科学方面有所实践,那也是他们唯一的实践,他们知道我知道这一切。不过这是一个不错的应用,我承认应该还有其他地方需要这样的实践,理论计算机科学也将会拓展到其他方面,这就是我们基金会在做的一些事。
3.2 创建 Math for America
我在 2009 年从基金会退休,但是我从来没有像现在这么忙。人们常说你都退休了,怎么可能会很忙,但是实际上我真的非常非常忙。为了提高数学教学水平,我们在几年之前创建了 Math for America。每个人都很关心美国孩子的数学教育问题。我们有我们自己的观点。我们通常狭义的观点是,我们的老师懂数学。你会说当然了。但是很让人吃惊的是,尤其是当你上了中学的时候,你会发现大部分的数学老师数学懂得却不多。这不是一个很有效的环境,至少在激发学生学习数学,科学或者任何其他东西的兴趣时表现更加明显。当你选了意大利语的课时,你不想要一个母语是中文的人来教你,你想要一个母语是意大利语的人来教你,虽然他们都能读意大利文,他会说我学过意大利文,你们不用担心,但是你却在想,不,我想要一个母语是意大利语的人来教我,但是实际上孩子们别无选择。为什么我们没有足够的教师来教这些孩子们课程呢?为什么我们没有足够的真正懂数学和其他科学的老师来教他们呢?其中一种回答就是如果他们真的懂这门学科,那他们可以带着同样多的知识去 Google, Goldman Sachs 或者什么其他地方。因为现在的世界变得更加数量化,经济也比三四十年之前更多地建立在数量化的方法上。即使他们适合做老师,但因为存在着薪资水平以及名誉地位的不同,他们也会被其他地方挖走,你很少看见这些人留在课堂上面授课。所以我们必须使这个职位变得更加吸引人,这也就是说给他们发更高的工资,也正是我们在纽约和几个其他城市通过我们的项目正在做的,给老师们更多的尊重,并提供更多的支持。只要我们给他或者她多支付 25%的薪酬,让他们感觉到不一样。一下子,这个职业就变得更加好了。如果我们让这个职业变得更加吸引人了,那就会有人追求这个职业。如果我们什么都不做,那情况将会变得很糟糕。所以这是我们每个人都应该考虑的问题。
四、西蒙斯的指导性原则
作为总结,当我告诉我的妻子我将会在这次演讲中说些什么的时候,她说,你应该以一些道理来结束你的演讲。实际上我没有什么道理要告诉你们的。她确信只要我拼命地想,一定能够想到一些道理。我想我的确是有一些道理要讲,或者说是一些指导性原则而已,“道理”这个词似乎有点太严肃了,但是我会告诉你们一些我自己认为比较好的的指导性原则。有一件事我经常做的就是尝试一些新的事情。我经常喜欢尝试一些新的事情,我不想和大部队一起跑,其中一个原因就是我跑得太慢了。如果 N个人在不同的地方但是在同一时间做同一件事,对于我,我想我会成为最后一个做完事情的人,我绝对不会赢得这场比赛。但是如果你在同一时间要去想一个新的问题,或者有一种和其他人不同的新的方法,也许那会给你一个机会,所以,尝试着做一些新的事情。第二,尽你所能和最优秀的人合作。当你发现一个很不错的人,并且能够与你一起合作做一些不寻常的事,你要尝试着找一些方法一起去做,因为这会扩大你的视野,让你从中得到一些好处,而且和很棒的人一起工作也很有意思。我还要说下 “被美丽指引”,我认为每一件事都有它美的一面,至少对于我来说是这样。你可能会问,建一家交易公司有什么美的一面呢?它美就美在做正确的事,找一群正确的人,用正确的方法把事情做正确。如果你认为你是第一个这么做并且做正确的人,我想你就是做对了,这种感觉非常的好,把事情做正确是一件很美的事。同样,人们没想过,其实解决数学问题也是一件很美的事。所以“被美丽指引”是一个很不错的指导性原则。然后我还写了,不要放弃,至少尝试着不要放弃,有时花很长时间去做一件事是正确的。最后,让我们期盼一点点好运。那么今天我的演讲就到此结束了。
问答
Q1:Jim, 我的问题是,在经济学当中,有的时候有一些假设前提,比如说对于非凸的生产曲线有完全竞争假设,在金融市场上有完美流动性假设,在效率问题上有对称信息。那么在文艺复兴科技公司,你们有离散数学小组吗?你们会同时留意肥尾分布风险以及连续性方差吗?
A:这真是一系列很专业的问题,而且是我意料之中的。我的回答是,是的,我们关注你所提到的所有这些风险。肥尾分布风险只是告诉我们,金融市场上的信息分布不是简单的正态分布,那个市场上的尾巴显然没有内幕人员看到的尾巴偏离的大。所以,我们知道所有的这些,并且懂得这些都是很重要的因素。其实,我们会仔细考量所有们所能想到的并且能考察的因素,直到现在我们的方法也基本上是正确的。
Q2:你认为高频交易是有益社会的吗?如果是这样,你觉得有多少?
A:这个问题是问,是否认为高频交易是有益社会的,如果是,有多少,有多少是指什么?是你能从中赚取多少钱还是它有多大的作用?(笑)我认为高频交易是个中性词,当然也是有益社会的。事实情况是,随着市场变得电子化,电脑被用来提出价格,接受订单和做一切其他的事。市场流动性也因此已经变得前所未有的强大,买卖差价一直在缩小。曾经,那些站在交易所地面上的专家们是做市商,他们通常要求很大的买卖差价,一旦出现问题,他们就消失的无影无踪了。有了电子交易之后,它能够使交易变的迅速,这样就会使买卖差价变小,也会使市场影响力变小,这两种影响并存。当你买股票的时候,通常你付的钱比折中价稍微高一点,当你卖股票的时候,你付的钱比折中价稍微低一点,但是从另一方面来讲,你却是市场的推动者。如果你买 100股也许你不会推动市场变化。如果你买 10 万股,你也许会推动市场变化,到底会移动多少呢?如果你是这个市场上的唯一一个买家,你会带动整个市场跟你一起发生显著的变化。如果有很多个买家存在,但是你是唯一的一个卖家的话,10万股也会很容易地被市场消化掉。交易量越多对市场越好,而这些大交易量是由高频交易员创造的。因此通过研究发现,因为高频交易,买卖差价和市场影响力下降了很多。所以,如果你认为高市场流通性是有益社会的,那么高频交易也可以说是有益社会的。如果要问它有什么缺点,那缺点就是它会造成市场崩溃。几个月之前,市场在几分钟内经历了剧烈的震动,但是很快市场就回到了原来的正常水平,但是这也是不可忽视的一点。在 1987年, 股票市场在半天之内猛跌了 25%,而且直到 6个月之后市场才恢复过来,那是因为市场的另一边是空的。刚才提到的那个市场波动之所以很快恢复过来是因为那只是市场上的某一个交易人犯了一个错误,或者是某个人下的单太大了,所以市场上有些恐慌情绪,导致市场下跌 3%。我当时被震惊了,不知道的到底发生了什么,但是很快,很多的交易订单又进入了市场,在十分钟内市场就恢复了过来,这是给市场造成了一些不稳定,但是这与 1987 年的市场崩溃完全是两码事。所以以上就是我对一个很短的问题的一个很长的作答。是的,我认为高频交易是有益社会的,我认为那些反对它的人是错的。
Q3:你在 fundamental trading中获得的经验如何影响你在文艺复兴科技公司的建模过程?
A:的确,我在 fundamental trading 获得的经验教会了我一些在建模时要注意的东西。当我们建模时,我们尽量保持越原始越好,我们尝试着通过直接阅读从市场上观察来的数据来建模。我承认我以前的经历对我的后来的工作是有影响的。我认为即使你是做数量分析的,能够在做纯数量分析之前在交易市场上获得一点经验是很不错的选择。
Q4:人们应该更加关注哪些经济指标?举个简单的例子,当我们看到国债数据的时候,我们发现那个数字是所有美国人工资总和的两倍,而这些是我们都需要清还的债务,我知道我们应该减小这个数据。但是作为一个普通人,我们到底应该怎样去看待分析这些数据呢?我们应该怎么去看待 650亿的 CDO?
A:其实这个问题不仅仅困扰着美国,它也困扰着世界上许多其他的国家,ZF借了很多的债,导致资产负债表的不平衡。很显然,美国正在进入经济的一个衰退期,我们正忙着去保释那些大的银行,这些钱到底被花到哪里了呢?到底这会导致什么?我认为你所提到的事情是的确值得关注的事,国债占 GNP的比率现在甚至变得比二战刚刚结束时的数字还高,而且我们从来就没能还清这笔债。但是我们所做的是让 GDP不断地增长,所以分母在不断地变大,我想不久我们的国债会得到控制的。在任何情况下,我觉得没有任何因素比保持增长更重要的了,但是我不认为美国正在往促进经济增长这条路上走,因为也许我们应该印更多的钞票,建更多的基础设施,把钱投入到现在还落后的地方去,让更多的人能够找到一份工作,让我们自己处于更好的位置,即使这会造成一定的通货膨胀,但通胀并不是世界上最糟糕的事情。这次的金融危机之所以让美国人变得更穷了,是因为大家的住房的价值变低了,而美国人最大的资产往往是他们的房产,他们以不断增长的房价作抵押来融资,这也造成了当时经济的过热增长,但最终这种增长停止了。所以我们有两件不容乐观的事在发生,人们的资产负债表就此被摧毁了,他们的资产下降了,但是他们同时却要还债。资产负债表的灾难不是一两天就能修复的,我认为要在这个基础上重新恢复,我们得花上好几年的时间。那么我们的ZF做的究竟是对还是错?我反正不是这届ZF的热衷支持者。我不太支持这次的税改方案,除了(台下有人鼓掌),有个人为我鼓掌(笑),实际上对像我这样的富人减税是毫无意义的,对台下的某些人也是毫无意义的。但是这的确是我们应该付出的代价,因为我们有一个比较腼腆的总统,这是我们为保持目前失业率,并且保证我们对穷人实行减税所付出的代价,但是从另一方面看,这不是世界上最糟糕的事,也许我们会创造一些增长。我的观点是,经济增长,这就是我们现在所需要的,我宁愿承受高的通货膨胀也不愿意牺牲经济增长。我们经常说我们让美元保值,但是如果你连工作都没有了,谁又真正在乎这通货膨胀呢?一个高价的美元永远不会解决 20%的高失业率问题。
Q5:有人说数量是分析模型的某些缺陷导致这次的经济危机,你是怎么认为的?
A:不对,我认为数量分析模型和这次经济衰退没有任何关系。经济衰退的发生是因为贷款是建立在不良资产作抵押的基础上的,而这些贷款之所以可能存在是因为有一个能够接受他们的市场存在,次级贷款让你能够贷款给一些你做梦都没有想到过会借钱给他们的人。如果你叔叔说:“别担心,你来借钱,我来买这些交易凭证。”你回答说:“好的,叔叔,如果你来买走我的这些交易凭证,那我就把钱借给他们。”于是,你把钱借了出去,又把交易凭证卖给了你叔叔,这些交易凭证又被证券化,而且在天黑之前被盖上了 AAA的章。是谁在做这件事呢?是那些评级机构。(他们给这些证券评成 AAA要么是因为实际情况如此而把它们评成了 AAA级),我想大部分情况还是属于这种情况的(此处反讽),但也可能因为他们的费用收入是从这些证券发行商领的,这些证券发行商如果不能保证自己得到 AAA的评级,他们也就不会发行这些债券,所以这是一条产业链。在过去,你如果向银行借钱,那借钱的对象真的是银行,银行会认真检查你的抵押品价值,它们希望你能够如期偿还,所以银行会不惜一切代价保证你能按时还款。但是现在呢?银行借完钱给你后的一微秒不到就将这个债务凭证转手卖给了其他人。所以这些和数量分析模型没有任何的关系。的确,数量分析模型是设计了一系列的抵押凭证,但是这背后的概率数据又是多大呢?一个在 8年内在 4个城市换过 7个工作的人的还款概率是多少呢?任何一个有点常识的人都知道,这个概率接近于零。但是这个事实却没有被考虑之后运用到的概率数据之中。所以这就是我的回答。
Q6: 当你创建模型来做市场交易,你会更加的侧重于最基本的经济指标和数据,还是更加侧重于像 S&P500,金价这样的价格行为?或者是两者兼顾呢?
A:我在我的演讲之初提到过 Warren Ambrose, 那个启发了我的数学家,其实我不会回答你的问题。在我的职业生涯早期的某一天我曾经问过他:”Ambrose教授,你认为是精通地学习某一个领域的数学好还是泛泛地学习很多领域的数学好呢?” 教授回答说:“老套的话怎么说都通。我们的讨论结束了。”所以,其实这个问题没有一个唯一的正确答案。所有的东西都是有用的,你的经济学模型是有用的,那基本分析也是有用的,所以这些都是有用的。