全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 HLM专版
1694 0
2014-03-17
I'm analysing reaction time data from a linguistic experiment (a variant of  a lexical decision task).   To ascertain that the data was normally distributed, I used *shapiro.test *for each participant (see commands below), but only one out of 21 returns a p value above p.0 05.

> f = function(dfr) return(shapiro.test(dfr$Target.RTinv)$p.value)
> p = as.vector(by(newdat, newdat$Subject, f))
> names(p) = levels(newdat$Subject)
> names(p[p < 0.05])

Removing a few outliers per subject doesn't make a difference, and aggressive" removal of outliers (done by subject, for each of the 6 conditions ) still results in non-normally distributed data by subject.

Does this invalidate any attempt at multi-level modelling?



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群