13 June 2013
Contents
1 Review of Statistics 51.1 Random Variables and Distributions . . . . . . . . 5
1.2 Moments . . . . . . . . . . . . .. . . . . . . . . . . . . . 11
1.3 Distributions Commonly Used in Tests . . . . . . 14
1.4 Normal Distribution of the Sample Mean as an Approximation . . . . 17
A Statistical Tables 19
2 Least Squares Estimation 22
2.1 Least Squares . . . . . . . . . . . . . . . . 22
2.2 Hypothesis Testing . . . . . . . . . . . . 43
2.3 Heteroskedasticity . . . . . . . . . . . . . 53
2.4 Autocorrelation . . . . . . . .. . . . . . . . 56
A A Primer in Matrix Algebra 59
A Statistical Tables 64
3 Regression Diagnostics
673.1 Misspecifying the Set of Regressors . . . 67
3.2 Comparing Non-Nested Models . . . . . . 68
3.3 Non-Linear Models . . . . . . . . . . 68
3.4 Outliers . . .. . . 69
3.5 Estimation on Subsamples . .. . . 69
3.6 Robust Estimation
. . . . . . 734 Asymptotic Results on OLS 80
4.1 Properties of the OLS Estimator when “Gauss-Markov” Is False . . . 80
4.2 Motivation of Asymptotics . . . . . . 80
4.3 Asymptotics: Consistency . . . . . . 80
4.4 When LS Cannot be Saved . . . . . . 82
4.5 Asymptotic Normality . . . . . . . 87
5 Index Models 89
5.1 The Inputs to a MV Analysis . .. . . 89
5.2 Single-Index Models . . . . . . . 90
5.3 Estimating Beta . . . . . . . . 95
5.4 Multi-Index Models . . . . . . . . 97
5.5 Principal Component Analysis
. . . . . . 1005.6 Estimating Expected Returns . . . . . . . . 104
6 Testing CAPM and Multifactor Models 106
6.1 Market Model . . . . .. . 106
6.2 Calendar Time and Cross Sectional Regression
. . .. . . . 1176.3 Several Factors . . . . . . . . 119
6.4 Fama-MacBeth
. . . . . . . . . 120A Statistical Tables 124
7 Time Series Analysis 127
7.1 Descriptive Statistics . . . . . .. . . 127
7.2 Stationarity . . . . . . . . . . . . 128
7.3 White Noise . . . . . . . . . . . 129
7.4 Autoregression (AR) . . . . . . . . . 129
7.5 Moving Average (MA) . . . . . . . . 138
7.6 ARMA(p,q) . . . . . . . . . . . . 139
7.7 VAR(p) . . . . . . . . . . . . 140
7.8 Impulse Response Function . . . . . . . . 142
7.9 Non-stationary Processes . . . . . 144
2
8 Predicting Asset Returns 155
8.1 Autocorrelations . . . . . . . . . . . . . . 155
8.2 Other Predictors and Methods . . . . . . . . . . . 163
8.3 Out-of-Sample Forecasting Performance . . . . . . . 166
8.4 Security Analysts . . . . . . . . .
1859.1 Maximum Likelihood . . . . . . . . 185
9.2 Key Properties of MLE . . . . . . . . . . . 191
9.3 Three Test Principles . . . . . . . . . . 192
9.4 QMLE
. . . . . . . .. . . . 19210 ARCH and GARCH 194
10.1 Heteroskedasticity . . . . .. . . 194
10.2 ARCH Models . . . . . . . . . . . 200
10.3 GARCH Models . . . . . . . . . 203
10.4 Non-Linear Extensions . . . . .. . . 206
10.5 (G)ARCH-M . . . . . . . . . . . 208
10.6 Multivariate (G)ARCH . . . . .. . . 209
11 Risk Measures 214
11.1 Value at Risk . . . . . . . . . . 214
11.2 Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.3 Target Semivariance (Lower Partial 2nd Moment) and Max Drawdown 223
12 Return Distributions (Univariate) 229
12.1 Estimating and Testing Distributions . . . . . .. . . . 229
12.2 Tail Distribution . . . . . . . . . . . . 242
13 Return Distributions (Multivariate)
25213.1 Recap of Univariate Distributions . . . . . . . . . 252
13.2 Exceedance Correlations . . . . . . . 252
13.3 Beyond (Linear) Correlations . . . . . . 254
13.4 Copulas . . . . . . . . . . . 260
13.5 Joint Tail Distribution . . . . .. . . . 267
14 Option Pricing and Estimation of Continuous Time Processes 274
14.1 The Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . 274
14.2 Estimation of the Volatility of a Random Walk Process . . . . . . . . 282
15 Event Studies 289
15.1 Basic Structure of Event Studies . . .. . . . . 289
15.2 Models of Normal Returns . . . . . . . 291
15.3 Testing the Abnormal Return . . . . . . 295
15.4 Quantitative Events . . . . . . . . . 297
16 Kernel Density Estimation and Regression 299
16.1 Non-Parametric Regression . . . . . . . 299
16.2 Examples of Non-Parametric Estimation . . . . 307
17 Simulating the Finite Sample Properties
31217.1 Monte Carlo Simulations . . . . . . . . 313
17.2 Bootstrapping . . . . . .. . . . . 317
18 Panel Data
32218.1 Introduction to Panel Data . . . . . . . . 322
18.2 Fixed Effects Model . . . . . . . . 322
18.3 Random Effects Model . . . . . . . 326
19 Binary Choice Models
32919.1 Binary Choice Model . . . . . . . 329
19.2 Truncated Regression Model . . . . .. . . 336
19.3 Censored Regression Model (Tobit Model) . . . . . . . 340
19.4 Heckit: Sample Selection Model . . . . . . . . 343