全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1962 3
2014-06-16
What happens when you don't have an idea of the parameters distribution? What approach should we use?

Most of the time we aim to undersatnd if a certain variable has any influence over the presence/absence of a certain species, and the variable is accepted or not according to the variable importance. This means that most of the times we are not thinking on the expetcted distribution a parameter should have.

Is it correct to assume that all parameters follow a normal distribution, when all i know is that b1,b2,b3 and b4 should vary between -2 and 2, and b0 can vary between -5 and 5 ?

model {
    # N observations
    for (i in 1:N) {
        species ~ dbern(p)
        logit(p) <- b0 + b1*var1 + b2*var2 +
            b3*var3 + b4*var4
    }
    # Priors
    b0     ~ dnorm(0,10)
    b1   ~ dnorm(0,10)
    b2 ~ dnorm(0,10)
    b3  ~ dnorm(0,10)
    b4  ~ dnorm(0,10)
}
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-6-16 02:40:48

up vote
6
down vote
accepted
Parameters in linear predictor are t-distributed. When the number of records goes to infinity, it converges to normal distribution. So yes, normally it is considered correct to assume normal distribution of parameters.

Anyways, in bayesian statistics, you need not to assume parameter distribution. Normally you specify so called uninformative priors. For each case, different uninformative priors are recommended. In this case, people often use something like (you can tweak the values of course):

dunif(-100000, 100000)
or

dnorm(0, 1/10^10)
The second one is preferred, because it is not limited to particular values. With uninformative priors, you have take no risk. You can of course limit them to particular interval, but be careful.

So, you specify uninformative prior and the parameter distribution will come out itself! No need to make any assumptions about it.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-6-16 02:41:32
Unfortunately, harmless seeming priors can be very dangerous (and have even fooled some seasoned Bayesians).

This recent paper, provides a nice introduction along with plotting methods to visualize the prior and posterior (usually marginal priors/posterior for the parameter(s) of interest).

Hidden Dangers of Specifying Noninformative Priors. John W. Seaman III, John W. Seaman Jr. & James D. Stamey The American StatisticianVolume 66, Issue 2, May 2012, pages 77-84. http://amstat.tandfonline.com/doi/full/10.1080/00031305.2012.695938

Such plots in my opinion should be obligatory in any actual Bayesian analysis, even if the analyst does not need them – what is happening in a Bayesian analysis should be made clear for most readers.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-25 07:49:54
ReneeBK 发表于 2014-6-16 01:47
What happens when you don't have an idea of the parameters distribution? What approach should we use ...
谢谢你
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群