全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1740 1
2014-06-17
I conducted an analysis using a logit model and now want to do the same using a probit model. Can anyone please turn this winbugs logit model into a winbugs probit model?

model
{
for (i in 1:n) {
# Linear regression on logit
logit(p) <- alpha + b.sex*sex + b.age*age
# Likelihood function for each data point
frac ~ dbern(p)
}
alpha ~ dnorm(0.0,1.0E-4) # Prior for intercept
b.sex ~ dnorm(0.0,1.0E-4) # Prior for slope of sex
b.age ~ dnorm(0.0,1.0E-4) # Prior for slope of age
}
Data
list(sex=c(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,    1,
  1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,     1, 1, 0,
  0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,   1, 1, 1,
  0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1),
  age= c(69, 57, 61, 60, 69, 74, 63, 68, 64, 53, 60, 58, 79, 56, 53, 74, 56, 76, 72,
  56, 66, 52, 77, 70, 69, 76, 72, 53, 69, 59, 73, 77, 55, 77, 68, 62, 56, 68, 70, 60,
  65, 55, 64, 75, 60, 67, 61, 69, 75, 68, 72, 71, 54, 52, 54, 50, 75, 59, 65, 60, 60,
  57, 51, 51, 63, 57, 80, 52, 65, 72, 80, 73, 76, 79, 66, 51, 76, 75, 66, 75, 78, 70,
  67, 51, 70, 71, 71, 74, 74, 60, 58, 55, 61, 65, 52, 68, 75, 52, 53, 70),
  frac=c(1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,   1, 0,
  1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0,    1, 1, 1,
  1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,   1, 1, 1,
  1, 0, 1, 1, 0, 0, 1, 0, 0, 1),
  n=100)
  Initial Values
  list(alpha=0, b.sex=1, b.age=1)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-6-17 06:38:52
WinBUGS accepts multiple types of link functions (see page 15 in the WinBUGS manual). For a probit model, change your linear regression equation to:

probit(p[i]) <- alpha + b.sex*sex[i] + b.age*age[i]
I would recommend you center the age variable, otherwise you may well run into some convergence problems, so something like:

probit(p[i]) <- alpha + b.sex*sex[i] + b.age*(age[i] - mean(age[]))
Alternatively, for a probit model (if the probit functions gives you some trap errors) you could use the phi standard normal cdf function:

p[i] <- phi(alpha + b.sex*sex[i] + b.age*(age[i] - mean(age[])))
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群