xiaohutu666 发表于 2014-6-17 10:24 
有相关的资料也可以,我自己看看
The multi-integral can be solved by exchange the integral order.
consider the inner double integral:
\[\int_0^t\int_0^s \sigma(u)dw(u)ds\]
change the order:
\[\int_0^t\sigma(u)\int_u^tdsdw(u)\]
\[\int_0^t(t-u)\sigma(u)dw(u)\]
put in the outer integral:
\[\int_0^T\int_0^t(t-u)\sigma(u)dw(u)dt\]
change the order:
\[\int_0^T\sigma(u)\int_u^T (t-u)dt dw(u)\]
\[\int_0^T\sigma(u)\frac{1}{2}(T-u)^2 dw(u)\]
let \[X(T)=\int_0^T\sigma(u)\frac{1}{2}(T-u)^2 dw(u)\]
\[E(X(T))=0\]
Appying Ito isometry:
\[Var(X(T))=E(X^2(T))=\int_0^T\sigma^2(u)\frac{1}{4}(T-u)^4 du\]
best,