全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 HLM专版
2163 1
2014-06-27
Panel Data Models: Random Parameters – Multilevel Models

The random parameters model is defined in terms of the density of the observed random variable and the structural parameters in the model:

           

That is, each distribution for group i is parameterized in terms of its own parameter vector, qi.  The next level of the hierarchical (multilevel) model is:

           

The random effects model is a special case in which only the constant term is random. The random parameters model has been implemented in other software for the binary logit, linear regression, and Poisson regression model. LIMDEP’s implementation supports a far wider variety of models.

  • Linear regression model
  • Probit, logit, Gompertz, complementary log log binary choice
  • Tobit, truncated regression, categorical data
  • Stochastic frontier
  • Survival models: exponential, Weibull, lognormal, loglogistic
  • Loglinear models: Weibull, gamma, exponential, inverse Gauss
  • Bivariate probit, partial observability
  • Ordered probit, ordered logit, ordered Gompertz, ordered complementary log log
  • Sample selection
  • Poisson, negative binomial, zero inflated Poisson
  • Conditional logit (multinomial logit - discrete choice)

Other features of the estimator

  • Mixture of fixed and random parameters - you specify which parameters are random and which are fixed
  • Panel data or cross section implementation
  • Distributions of random parameters may be normal, tent, uniform, lognormal
  • Maximum simulated likelihood may use pseudorandom draws or Halton sequences
  • ui may be a single random draw or AR(1)
  • Free correlation among random parameters (even with different distributions)
  • Predictions computed
  • Marginal effects

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-6-27 04:44:31
谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群