全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
3129 7
2014-08-06
cat.gif
by:Ted Dunning, Ellen Friedman
http://www.oreilly.com/data/free/machinelearning.csp?intcmp=il-strata-free-product-lgen_machinelearning
  • Print Length: 53 pages
  • It`s a short e-book.

Building a simple but powerful recommendation system is much easier than you think. This report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommender. The style of the report makes this subject approachable for all levels of expertise.

Authors Ted Dunning and Ellen Friedman walk you through a design that relies on "careful simplification." You’ll learn how to collect the right data, analyze it with an algorithm from the Apache Mahout library, and then easily deploy the recommender using search technology with Apache Solr. This powerful and effective combination is efficient: it does learning offline and delivers rapid response recommendations in real time.

  • Understand the tradeoffs between simple and complex recommenders
  • Collect user data that tracks user actions—rather than their ratings
  • Predict what a user wants based on behavior by others, using Mahout for co-occurrence analysis
  • Use Solr to offer recommendations in real time, complete with item metadata
  • Watch the recommender in action with a music service example
  • Improve your recommender with dithering, multimodal recommendation, and other techniques
contents:

1. Practical Machine Learning
  What’s a Person To Do?
  Making Recommendation Approachable
2. Careful Simplification
  Behavior, Co-occurrence, and Text Retrieval
  Design of a Simple Recommender
3. What I Do, Not What I Say
  Collecting Input Data
4. Co-occurrence and Recommendation
  How Apache Mahout Builds a Model 16
  Relevance Score
5. Deploy the Recommender
  What Is Apache Solr/Lucene?
  Why Use Apache Solr/Lucene to Deploy?
  What’s the Connection Between Solr and Co-occurrence Indicators?
  How the Recommender Works
  Two-Part Design
6. Example: Music Recommender
  Business Goal of the Music Machine
  Data Sources
  Recommendations at Scale
  A Peek Inside the Engine
  Using Search to Make the Recommendations
7. Making It Better
  Dithering
  Anti-flood
  When More Is More: Multimodal and Cross Recommendation
8. Lessons Learned
A. Additional Resources



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-8-6 13:00:42
謝謝分享!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-11-20 09:37:47
感谢楼主分享这么好的书,浅显易懂,赞!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-9-20 17:26:43
謝謝分享!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-10-11 14:02:44
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-10-14 09:49:28
很好的书,多谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群