肿瘤疫苗是通过激活自身免疫系统来治疗肿瘤的免疫疗法。肿瘤疫苗主要包括肿瘤细胞疫苗、肿瘤抗原疫苗、肿瘤DNA疫苗、DC疫苗、细菌疫苗等。根据用途的不同可分为预防性疫苗和治疗性疫苗,前者可控制肿瘤的发生,后者用于化疗后的辅助治疗。
表1:肿瘤疫苗发展进程

肿瘤疫苗是将肿瘤抗原以多种形式如肿瘤细胞、肿瘤相关蛋白或多肽、表达肿瘤抗原的基因等导入患者体内,通过肿瘤抗原刺激体内T细胞,激发特异性细胞免疫,从而清除肿瘤的治疗方法。肿瘤疫苗具有疗效高、特异性强、不良反应小等优点,可独立治疗肿瘤,又可与手术、放疗、化疗相结合,在肿瘤综合治疗中占有重要地位。
图1:DC疫苗的制备过程

非特异性免疫刺激是通过刺激T细胞或抗原呈递细胞来加强抗原呈递过程,活化机体免疫力从而杀死肿瘤细胞的治疗方法。非特异性免疫刺激剂是指能激活多数T或B淋巴细胞克隆的非特异性刺激物质,包括内毒素、脂质A、海藻糖、胸腺肽以及一些中药成分。这种疗法从70年代兴起,但因其毒性、治疗时间久以及治疗肿瘤范围限制导致应用受限。
非特异性免疫又称先天性免疫,与特异性免疫相对应,都是机体识别和排斥异己物质的机能。非特异性免疫是机体在长期的种系发育与进化过程中逐渐建立起来的天然防御功能,具有先天性、可遗传、反应迅速、作用无特异性等特点。
非特异性免疫刺激通过刺激剂诱导非特异性免疫反应,激活巨噬细胞,增强溶酶体活性,提高T细胞、NK细胞等的细胞活性从而起到抗肿瘤作用。通过刺激抗原呈递细胞来增强抗原呈递的药物包括:Toll样受体配体咪喹莫特用于治疗基底细胞癌,卡介苗用于膀胱癌局部灌注。通过抑制免疫调节T细胞来增强抗原呈递的药物包括:达利珠单抗Daclizumab,地尼白介素-2,用于治疗皮肤性T细胞白血病及卵巢癌。
肿瘤免疫微环境对肿瘤生物治疗的影响较大,大量的免疫刺激剂处于讨论和研究中,但确证的临床疗效还有待进一步深入研究。
图2:非特异性免疫刺激作用原理

免疫检验点抗体是通过激活正向刺激因子或抑制负向刺激因子来激活病人自身免疫系统中的T细胞从而消灭肿瘤细胞的治疗方法。
单抗是由一个B淋巴细胞增生、繁殖而成的单克隆细胞所产生的抗体,与一般的抗血清不同,是针对一种抗原的抗体,特异性强,可大量生产,易标准化,分子组成均匀、单一。通过淋巴细胞杂交瘤技术或基因工程技术制备的单抗药物可以作为诊断剂或检测剂,专一性识别相关抗原,对肿瘤相关靶点特异性结合,主要通过抗体依赖性细胞毒性(ADCC)效应、补体依赖性细胞毒作用(CDC)等效应机制选择性杀伤肿瘤细胞。单克隆抗体因具有鲜明的靶向性和显著的疗效,在肿瘤治疗中发展迅速,对淋巴癌、乳腺癌、结直肠癌、肺癌、肾癌、黑色素瘤等均有疗效。
图3:单克隆抗体

T细胞的激活依靠“双信号”细致地调控。一个激活信号是MHC-TCR的结合,另一个是共刺激分子(OX40,4-1BB)和共抑制分子(CTLA-4.PD-L1.PD-1)的信号传递,好比“油门”和“刹车”。运用OX40、4-1BB的激活剂单抗犹如“踩油门”,运用CTLA-4、PD-1/PD-L1的拮抗剂单抗如同“松刹车”。
图4:免疫检验点共信号机制

目前,负向刺激因子的抑制剂是研究的重点。以抗CTLA-4单抗为例,CTLA-4表达于大部分活化的T细胞表面,CTLA-4与CD80结合传导抑制信号,抑制T细胞的免疫反应,封闭CTLA-4后,活化T细胞可以持久发挥抗肿瘤免疫效应。
图5:免疫检验点抗体作用机理

免疫检验点单抗面临的挑战是,它仅能解除已经位于肿瘤边缘的T细胞的束缚或加强呈递,但不能促使T细胞攻击肿瘤,一些病人并不会进行免疫反应。