Eigenvalues and the Number-of-Factors Problem
Now that we have a measure of how much variance each successive factor extracts, we can return to the question of how many factors to retain. As mentioned earlier, by its nature this is an arbitrary decision. However, there are some guidelines that are commonly used, and that, in practice, seem to yield the best results.
The Kaiser criterion. First, we can retain only factors with eigenvalues greater than 1. In essence this is like saying that, unless a factor extracts at least as much as the equivalent of one original variable, we drop it. This criterion was proposed by Kaiser (1960), and is probably the one most widely used. In our example above, using this criterion, we would retain 2 factors (principal components).
The scree test. A graphical method is the scree test first proposed by Cattell (1966). We can plot the eigenvalues shown above in a simple line plot.
Cattell suggests to find the place where the smooth decrease of eigenvalues appears to level off to the right of the plot. To the right of this point, presumably, one finds only "factorial scree" -- "scree" is the geological term referring to the debris which collects on the lower part of a rocky slope. According to this criterion, we would probably retain 2 or 3 factors in our example.
Which criterion to use. Both criteria have been studied in detail (Browne, 1968; Cattell & Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Tucker, Koopman & Linn, 1969). Theoretically, one can evaluate those criteria by generating random data based on a particular number of factors. One can then see whether the number of factors is accurately detected by those criteria. Using this general technique, the first method (Kaiser criterion) sometimes retains too many factors, while the second technique (scree test) sometimes retains too few; however, both do quite well under normal conditions, that is, when there are relatively few factors and many cases. In practice, an additional important aspect is the extent to which a solution is interpretable. Therefore, one usually examines several solutions with more or fewer factors, and chooses the one that makes the best "sense." We will discuss this issue in the context of factor rotations below.