康德的《纯粹理性批判》被视为数学史的一个拐点。这里贡献给大家两卷本的
From Kant to Hilbert: A Source Book in the Foundations of Mathematics
通过精心挑选,收录了十七世纪末至二十世纪中期最伟大数学家的代表作或其节选的英文译本,包含主要的数学分支,如代数、几何、数论、分析、逻辑、集合论等,以显示它们是如何联系在一起的。这两卷著作共1389页。从目录,您能看出这些史料的价值。
愿这些好文章给您带来阅读的快乐。
Copyright Permissions xvii
Introduction 1
1. GEORGE B E R K E L E Y (1685-1753) 11
A. From the Philosophical commentaries 13
(Berkeley 1707-8)
B. Of infinites 16
(Berkeley 1901 [1707])
C. Letter to Samuel Molyneux 19
(Berkeley 1709)
D. From A treatise concerning the principles of
human knowledge, Part One 21
(Berkeley 1710)
E. De Motu 37
(Berkeley 1721)
F. From Alciphron 54
(Berkeley 1732)
G. From Newton's Principia mathematica 58
(Newton 1726)
H. The analyst 60
(Berkeley 1734)
2. COLIN M A C L A U R I N (1698-1746) 93
A. From A treatise of fluxions 95
(MacLaurin 1742)
3. JEAN LER.OND D'ALEMBERT (1717-1783) 123
A. Differential 123
(D'Alembert 1754)
B. Infinite 128
(D'Alembert 1765a)
C. Limit 130
(D'Alembert 1765V)
4. I M M A N U E L KANT (1724-1804) 132
A. From Thoughts on the true
estimation of active forces 133
(Kant 1747)
B. From the Transcendental aesthetic 135
(Kant 1787)
C. From the Discipline of pure reason 136
(Kant 1781)
D. Frege on Kant 148
(Frege 1884)
5. J O H A N N H E I N R I C H L A M B E R T (1728-1777) 152
A. From the Theory of parallel lines 158
(Lambert 1786)
6. B E R N A R D BOLZANO (1781-1848) 168
A. Preface to Considerations on some objects of
elementary geometry 172
(Bolzano 1804)
B. Contributions to a better-grounded presentation
of mathematics 174
(Bolzano 1810)
C. Purely analytic proof of the theorem that
between any two values which give results
of opposite sign there lies at least one
real root of the equation 225
(Bolzano 1817a)
D. From Paradoxes of the infinite 249
(Bolzano 1851)
1. CARL F R I E D R I C H GAUSS (1777-1855) 293
A. On the metaphysics of mathematics 293
(Gauss 1929)
B. Gauss on non-Euclidean geometry 296
C. Notice on the theory of biquadratic residues 306
(Gauss 1831)
8. D U N C A N G R E G O R Y (1813-1844) 314
A. On the real nature of symbolical algebra 323
(Gregory 1840)
9. AUGUSTUS DE MORGAN (1806-1871) 331
A. On the foundation of algebra 336
(De Morgan 1842a)
B. Trigonometry and double algebra 349
(De Morgan 1849b)
10. W I L L I A M R O W A N HAMILTON (1805-1865) 362
A. From the Theory of conjugate functions, or
algebraic couples; with a preliminary and
elementary essay on algebra as the science of
pure time 369
(Hamilton 1837)
B. Preface to the Lectures on quaternions 375
(Hamilton 1853)
C. From the Correspondence of Hamilton
with De Morgan 425
11. GEORGE BOOLE (1815-1864) 442
A. The mathematical analysis of logic, being an essay
towards a calculus of deductive reasoning 451
(Boole 1847)
12. JAMES JOSEPH SYLVESTER (1814-1897) 510
A. Presidential address to Section 'A'
of the British Association 511
(Sylvester 1869)
13. W I L L I A M K I N G D O N CLIFFORD (1845-1879) 523
A. On the space theory of matter 523
(Clifford 1876)
B. On the aims and instruments of
scientific thought 524
(Clifford 1872)
14. A R T H U R C A Y L E Y (1821-1895) 542
A. Presidential address to the British
Association, September 1883 542
(Cayley 1883)
15. CHARLES SANDERS PEIRCE (1839-1914) 574
A. From Linear associative algebra 584
(Benjamin Peirce 1870)
B. Notes on Benjamin Peirce's linear
associative algebra 594
(Peirce 1976)
C. On the logic of number 596
(Peirce 1881)
D. On the algebra of logic: a contribution
to the philosophy of notation 608
(Peirce 1885)
E. The logic of mathematics in
relation to education 632
(Peirce 1898)
F. From The simplest mathematics 637
(Peirce 1902)
References to Volume I i
Index to Volume I xxm
Volume II
16. GEORG FRIEDRICH B E R N H A R D R I E M A N N 649
(1826-1866)
A. Or the hypotheses which lie at the
foundation of geometry 652
(Riemann 1868)
17. H E R M A N N VON H E L M H O L T Z (1821-1894) 662
A. The origin and meaning of
geometrical axioms 663
(Helmholtz 1876a)
B. The facts in perception 689
(Helmholtz 1878b)
C. Numbering and measuring from
an epistemological viewpoint 727
(Helmholtz 1887)
18. JULIUS WILHELM RICHARD DEDEKIND
(1831-1916) 753
A. On the introduction of new functions
in mathematics 754
(Dedekind 1854)
B. From the Tenth Supplement to Dirichlet's
Lectures on the theory of numbers 762
(Dedekind 1871)
C. Continuity and irrational numbers 765
(Dedekind 1872)
D. From On the theory of algebraic integers 779
(Dedekind 1877)
E. Was sind und was sollen die Zahlen? 787
(Dedekind 1888)
F. From the Eleventh Supplement to Dirichlet's
Lectures on the theory of numbers 833
(Dedekind 1894)
G. Letter to Heinrich Weber (24 January 1888) 834
H. Felix Bernstein on Dedekind and Cantor 836
I. From the Nachlass 836
19. GEORG CANTOR (1845-1918) 838
A. On a property of the set of real
algebraic numbers 839
(Cantor 1874)
B. The early correspondence between
Cantor and Dedekind 843
C. Foundations of a general theory of manifolds:
a mathematico-philosophical investigation
into the theory of the infinite 878
(Cantor 1883d)
D. On an elementary question in the
theory of manifolds 920
(Cantor 1891)
E. Cantor's late correspondence with Dedekind
and Hilbert 923
20. LEOPOLD K R O N E C K E R (1823-1891) 941
A. Hilbert and Kronecker 942
(From Weyl 1944b)
E. Extract from Hilbert's Gottingen lectures 943
C. Two footnotes 946
(From Kronecker 1881 and 1886)
D. On the concept of number 947
(Kronecker 1887)
21. CHRISTIAN FELIX K L E I N (1849-1925) 956
A. Klein on the schools of mathematics 957
(From Klein 1911)
B. On the mathematical character of space-intuition
and the relation of pure mathematics to the
applied sciences 958
(From Klein 1911)
C. The arithmetizing of mathematics 965
(Klein 1895)
22. JULES H E N R I P O I N C A R E (1854-1912) 972
A. On the nature of mathematical reasoning 972
(Poincare 1894)
B. On the foundations of geometry 982
(Poincare 1898)
C. Intuition and logic in mathematics 1012
(Poincare 1900)
D. Mathematics and logic: I 1021
(Poincare 1905b)
E. Mathematics and logic: II 1038
(Poincare 1906a)
F. Mathematics and logic: III 1052
(Poincare 1906b)
G. On transfinite numbers 1071
(Poincare 1910)
23. THE F R E N C H ANALYSTS 1075
A. Some remarks on the principles of the
theory of sets 1076
(Borel 1905)
B. Five letters on set theory 1077
(Baire et alii 1905)
24. D A V I D H I L B E R T (1862-1943) 1087
A. On the concept of number 1089
(Hilbert 1900a)
B. From Mathematical problems 1096
(Hilbert 1900b)
C. Axiomatic thought 1105
(Hilbert 1918)
D. The new grounding of mathematics
First report 1115
(Hilbert 1922a)
E. The logical foundations of mathematics 1134
(Hilbert 1923a)
F. The grounding of elementary number theory 1148
(Hilbert 1931a)
G. Logic and the knowledge of nature 1157
(Hilbert 1930b)
25. LUITZEN EGBERTUS JEAN
B R O U W E R (1881-1966) 1166
A. Mathematics, science, and language 1170
(Brouwer 1928a)
B. The structure of the continuum 1186
(Brouwer 1928b)
C. Historical background, principles,
and methods of intuitionism 1197
(Brouwer 1952)
26. ERNST Z E R M E L O (1871-1953) 1208
A. On boundary numbers and domains
of sets: new investigations in the
foundations of set theory 1219
(Zermelo 1930)
27. GODFREY HAROLD HARDY
(1877-1947) 1234
A. Sir George Stokes and the concept of
uniform convergence 1234
(Hardy 1918)
B. Mathematical proof 1243
(Hardy 1929a)
28. NICOLAUS BOURBAKI 1264
A. The architecture of mathematics 1265
(Bourbaki 1948)
Bibliography 1277
Index 1331
附件列表