(内容说明)以下市部分内容:<作文> 新东方背诵五十篇新东方最新背诵文本50篇 编辑:老江山。。。 13 Skyscrapers and Environment In the late 1960’s, many people in North America turned their attention to environmental problems, and new steel-and-glass skyscrapers were widely criticized. Ecologists pointed out that a cluster of tall buildings in a city often overburdens public transportation and parking lot capacities. Skyscrapers are also lavish consumers, and wasters, of electric power. In one recent year, the addition of 17 million square feet of skyscraper office space in New York City raised the peak daily demand for electricity by 120, 000 kilowatts-enough to supply the entire city of Albany, New York, for a day. Glass-walled skyscrapers can be especially wasteful. The heat loss (or gain)through a wall of half-inch plate glass is more than ten times that through a typical masonry wall filled with insulation board. To lessen the strain on heating and air-conditioning equipment, builders of skyscrapers have begun to use double-glazed panels of glass, and reflective glasses coated with silver or gold mirror films that reduce glare as well as heat gain. However, mirror-walled skyscrapers raise the temperature of the surrounding air and affect neighboring buildings. Skyscrapers put a severe strain on a city’s sanitation facilities, too. If fully occupied, the two World Trade Center towers in New York City would alone generate 2.25 million gallons of raw sewage each year-as much as a city the size of Stanford, Connecticut , which has a population of more than 109, 000. 14 A Rare Fossil Record The preservation of embryos and juveniles is a rate occurrence in the fossil record. The tiny, delicate skeletons are usually scattered by scavengers or destroyed by weathering before they can be fossilized. Ichthyosaurs had a higher chance of being preserved than did terrestrial creatures because, as marine animals, they tended to live in environments less subject to erosion. Still, their fossilization required a suite of factors: a slow rate of decay of soft tissues, little scavenging by other animals, a lack of swift currents and waves to jumble and carry away small bones, and fairly rapid burial. Given these factors, some areas have become a treasury of well-preserved ichthyosaur fossils. The deposits at Holzmaden, Germany, present an interesting case for analysis. The ichthyosaur remains are found in black, bituminous marine shales deposited about 190 million years ago. Over the years, thousands of specimens of marine reptiles, fish and invertebrates have been recovered from these rocks. The quality of preservation is outstanding, but what is even more impressive is the number of ichthyosaur fossils containing preserved embryos. Ichthyosaurs with embryos have been reported from 6 different levels of the shale in a small area around Holzmaden, suggesting that a specific site was used by large numbers of ichthyosaurs repeatedly over time. The embryos are quite advanced in their physical development; their paddles, for example, are already well formed. One specimen is even preserved in the birth canal. In addition, the shale contains the remains of many newborns that are between 20 and 30 inches long. Why are there so many pregnant females and young at Holzmaden when they are so rare elsewhere? The quality of preservation is almost unmatched and quarry operations have been carried out carefully with an awareness of the value of the fossils. But these factors do not account for the interesting question of how there came to be such a concentration of pregnant ichthyosaurs in a particular place very close to their time of giving birth. 15 The Nobel Academy For the last 82years, Sweden’s Nobel Academy has decided who will receive the Nobel Prize in Literature, thereby determining who will be elevated from the great and the near great to the immortal. But today the Academy is coming under heavy criticism both from the without and from within. Critics contend that the selection of the winners often has less to do with true writing ability than with the peculiar internal politics of the Academy and of Sweden itself. According to Ingmar Bjorksten , the cultural editor for one of the country’s two major newspapers, the prize continues to represent “what people call a very Swedish exercise: reflecting Swedish tastes.“ The Academy has defended itself against such charges of provincialism in its selection by asserting that its physical distance from the great literary capitals of the world actually serves to protect the Academy from outside influences. This may well be true, but critics respond that this very distance may also be responsible for the Academy’s inability to perceive accurately authentic trends in the literary world. Regardless of concerns over the selection process, however, it seems that the prize will continue to survive both as an indicator of the literature that we most highly praise, and as an elusive goal that writers seek. If for no other reason, the prize will continue to be desirable for the financial rewards that accompany it; not only is the cash prize itself considerable, but it also dramatically increases sales of an author’s books. 16. the war between Britain and France In the late eighteenth century, battles raged in almost every corner of Europe, as well as in the Middle East, south Africa ,the West Indies, and Latin America. In reality, however, there was only one major war during this time, the war between Britain and France. All other battles were ancillary to this larger conflict, and were often at least partially related to its antagonist’ goals and strategies. France sought total domination of Europe . this goal was obstructed by British independence and Britain’s efforts throughout the continent to thwart Napoleon; through treaties. Britain built coalitions (not dissimilar in concept to today’s NATO) guaranteeing British participation in all major European conflicts. These two antagonists were poorly matched, insofar as they had very unequal strengths; France was predominant on land, Britain at sea. The French knew that, short of defeating the British navy, their only hope of victory was to close all the ports of Europe to British ships. Accordingly, France set out to overcome Britain by extending its military domination from Moscow t Lisbon, from Jutland to Calabria. All of this entailed tremendous risk, because France did not have the military resources to control this much territory and still protect itself and maintain order at home. French strategists calculated that a navy of 150 ships would provide the force necessary to defeat the British navy. Such a force would give France a three-to-two advantage over Britain. This advantage was deemed necessary because of Britain’s superior sea skills and technology because of Britain’s superior sea skills and technology, and also because Britain would be fighting a defensive war, allowing it to win with fewer forces. Napoleon never lost substantial impediment to his control of Europe. As his force neared that goal, Napoleon grew increasingly impatient and began planning an immediate attack. 17.Evolution of sleep Sleep is very ancient. In the electroencephalographic sense we share it with all the primates and almost all the other mammals and birds: it may extend back as far as the reptiles. There is some evidence that the two types of sleep, dreaming and dreamless, depend on the life-style of the animal, and that predators are statistically much more likely to dream than prey, which are in turn much more likely to experience dreamless sleep. In dream sleep, the animal is powerfully immobilized and remarkably unresponsive to external stimuli. Dreamless sleep is much shallower, and we have all witnessed cats or dogs cocking their ears to a sound when apparently fast asleep. The fact that deep dream sleep is rare among pray today seems clearly to be a product of natural selection, and it makes sense that today, when sleep is highly evolved, the stupid animals are less frequently immobilized by deep sleep than the smart ones. But why should they sleep deeply at all? Why should a state of such deep immobilization ever have evolved? Perhaps one useful hint about the original function of sleep is to be found in the fact that dolphins and whales and aquatic mammals in genera seem to sleep very little. There is, by and large, no place to hide in the ocean. Could it be that, rather than increasing an animal’s vulnerability, the University of Florida and Ray Meddis of London University have suggested this to be the case. It is conceivable that animals who are too stupid to be quite on their own initiative are, during periods of high risk, immobilized by the implacable arm of sleep. The point seems particularly clear for the young of predatory animals. This is an interesting notion and probably at least partly true. 38 Topaz Topaz is a hard, transparent mineral. It is a compound of aluminum, silica, and fluorine. Gem topaz is valuable. Jewelers call this variety of the stone “precious topaz”. The best-known precious topaz gems range in color from rich yellow to light brown or pinkish red. Topaz is one of the hardest gem minerals. In the mineral table of hardness, it has a rating of 8, which means that a knife cannot cut it, and that topaz will scratch quartz. The golden variety of precious topaz is quite uncommon. Most of the world’s topaz is white or blue. The white and blue crystals of topaz are large, often weighing thousands of carats. For this reason, the value of topaz does not depend so much on its size as it does with diamonds and many other precious stones, where the value increases about four times with each doubling of weight. The value of a topaz is largely determined by its quality. But color is also important: blue topaz, for instance, is often irradiated to deepen and improve its color. Blue topaz is often sold as aquamarine and a variety of brown quartz is widely sold as topaz. The quartz is much less brilliant and more plentiful than true topaz. Most of it is variety of amethyst: that heat has turned brown. NOTE: topaz / ’tэupжz; `topжz/ n (a) [U] transparent yellow mineral 黄玉(矿物). (b) [C] semi-precious gem cut from this 黄玉; 黄宝石. 39 The Salinity of Ocean Waters If the salinity of ocean waters is analyzed, it is found to vary only slightly from place to place. Nevertheless, some of these small changes are important. There are three basic processes that cause a change in oceanic salinity. One of these is the subtraction of water from the ocean by means of evaporation--- conversion of liquid water to water vapor. In this manner the salinity is increased, since the salts stay behind. If this is carried to the extreme, of course, white crystals of salt would be left behind. The opposite of evaporation is precipitation, such as rain, by which water is added to the ocean. Here the ocean is being diluted so that the salinity is decreased. This may occur in areas of high rainfall or in coastal regions where rivers flow into the ocean. Thus salinity may be increased by the subtraction of water by evaporation, or decreased by the addition of fresh water by precipitation or runoff. Normally, in tropical regions where the sun is very strong, the ocean salinity is somewhat higher than it is in other parts of the world where there is not as much evaporation. Similarly, in coastal regions where rivers dilute the sea, salinity is somewhat lower than in other oceanic areas. A third process by which salinity may be altered is associated with the formation and melting of sea ice. When sea water is frozen, the dissolved materials are left behind. In this manner, sea water directly materials are left behind. In this manner, sea water directly beneath freshly formed sea ice has a higher salinity than it did before the ice appeared. Of course, when this ice melts, it will tend to decrease the salinity of the surrounding water. In the Weddell Sea Antarctica, the densest water in the oceans is formed as a result of this freezing process, which increases the salinity of cold water. This heavy water sinks and is found in the deeper portions of the oceans of the world. NOTE: salinity / sэ’linэti; sэ`linэti/ n [U] the high salinity of sea water 海水的高含盐量. ->>saline / ’seilain; US -li:n; `selin/ 1.adj [attrib 作定语] (fml 文) containing salt; salty 含盐的; 咸的: * a saline lake 盐湖 * saline springs 盐泉 * saline solution, eg as used for gargling, storing contact lenses, etc 盐溶液(如用于漱喉、存放隐形眼镜等). 2. n [U] (medical 医) solution of salt and water 盐水. 40 Cohesion-tension Theory Atmospheric pressure can support a column of water up to 10 meters high. But plants can move water much higher; the sequoia tree can pump water to its very top more than 100 meters above the ground. Until the end of the nineteenth century, the movement of water in trees and other tall plants was a mystery. Some botanists hypothesized that the living cells of plants acted as pumps. But many experiments demonstrated that the stems of plants in which all the cells are killed can still move water to appreciable heights. Other explanations for the movement of water in plants have been based on root pressure, a push on the water from the roots at the bottom of the plant. But root pressure is not nearly great enough to push water to the tops of tall trees. Furthermore, the conifers, which are among the tallest trees, have unusually low root pressures. If water is not pumped to the top of a tall tree, and if it is not pushed to the top of a tall tree, then we may ask: how does it get there? According to the currently accepted cohesion-tension theory, water is pulled there. The pull on a rising column of water in a plant results from the evaporation of water at the top of the plant. As water is lost from the surface of the leaves, a negative pressure, or tension, is created. The evaporated water is replaced by water moving from inside the plant in unbroken columns that extend from the top of a plant to its roots. The same forces that create surface tension in any sample of water are responsible for the maintenance of these unbroken columns of water. When water is confined in tubes of very small bore, the forces of cohesion (the attraction between water molecules) are so great that the strength of a column of water compares with the strength of a steel wire of the same diameter. This cohesive strength permits columns of water to be pulled to great heights without being broken. 41.American black bears American black bears appear in a variety of colors despite their name. In the eastern part of their range, most of these brown, red, or even yellow coats. To the north, the black bear is actually gray or white in color. Even in the same litter, both brown and black furred bears may be born. Black bears are the smallest of all American bears, ranging in length from five to six feet, weighing from three hundred to five hundred pounds Their eyes and ears are small and their eyesight and hearing are not as good as their sense of smell. Like all bears, the black bear is timid, clumsy, and rarely dangerous , but if attacked, most can climb trees and cover ground at great speeds. When angry or frightened, it is a formidable enemy. Black bears feed on leaves, herbs. Fruit, berries, insects, fish, and even larger animals. One of the most interesting characteristics of bears, including the black bear, is their winter sleep. Unlike squirrels, woodchucks, and many other woodland animals, bears do not actually hibernate. Although the bear does not during the winter moths, sustaining itself from body fat, its temperature remains almost normal, and it breathes regularly four or five times per minute. Most black bears live alone, except during mating season. They prefer to live in caves, hollow logs, or dense thickets. A little of one to four cubs is born in January or February after a gestation period of six to nine months, and they remain with their mother until they are fully grown or about one and a half years old. Black bears can live as long as thirty years in the wild , and even longer in game preserves set aside for them.