全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管百科 爱问频道
38063 124
2014-09-18
    加权迭代最小二乘IRLS属于稳健回归方法,常用于样本较少的回归,IRLS属于M-EstimatorsIRLS介绍如下:注意步骤,完整了解加权迭代最小二乘IRLS和软件操作

先看First文献,再看Second文献!


First,IRLS and M-Estimators Introduction based on R/Splus

重要文献如下!!!

本帖隐藏的内容

7 Robust Regression.pdf
大小:(210.65 KB)

 马上下载




The method of iteratively reweighted least squares (IRLS) is used to solve certain optimization problems with objective functions of the form:


By an iterative method in which each step involves solving a weighted least squares problem of the form:




IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set. For example, by minimizing the least absolute error rather than the least square error.

Second,IRLS Introduction based on MATLAB with two types(IRLSMATLAB中具有两个版本:第一个版本是一般的M-EstimatorsIRLS另外一个版本是属于最优化算法的版本:基于范数Homotopy参数选择的IRLS)



      b = robustfit(X,y) returns a p-by-1 vector b of coefficient estimates for a robustmultilinear regression of the responses in yon the predictors in X. X is an n-by-p matrix of ppredictors at each of n observations. y is an n-by-1 vector of observed responses. By default, the algorithm uses iteratively reweighted least squares (IRLS) with a bisquare weighting function.

       Note : By default, robustfit adds a first column of 1s to X, corresponding to a constant term in the model. Do not enter a column of 1s directly into X. You can change the default behavior of robustfit using the input const, below. Robustfit treats NaNs in X or y as missing values, and removes them.

      b = robustfit(X,y,wfun,tune)specifies a weighting function wfun. tune is a tuning constant that is divided into the residual vectorbefore computing weights. The weighting function wfun can be any one of thefollowing strings:


3.png


      If tune is unspecified, the default value in the table is used. Default tuningconstants give coefficient estimates that are approximately 95% as statistically efficient as the ordinary least-squaresestimates, provided the response has a normal distribution with no outliers.Decreasing the tuning constant increases the downweight assigned to largeresiduals; increasing the tuning constant decreases the downweight assigned tolarge residuals.

      Thevalue r in the weight functions is: r= resid/(tune*s*sqrt(1-h)). Where resid is the vector of residuals from theprevious iteration, h is the vectorof leverage values from a least-squares fit, and s is an estimate of the standard deviation of the error term givenby s = MAD/0.6745. Here MAD is the median absolute deviation of the residualsfrom their median. The constant 0.6745 makes the estimate unbiased for thenormal distribution. If there are p columns in X, the smallest pabsolute deviations are excluded when computing the median.

      You can write your own weight function. The function must take a vector of scaledresiduals as input and produce a vector of weights as output. In this case, wfunis specified using a function handle @ (as in @myfun), and the inputtune is required.

      b = robustfit(X,y,wfun,tune,const)controls whether or not the model will include a constant term. const is'on' to include the constant term (the default), or 'off' to omit it. When constis 'on', robustfit adds a first column of 1s to X. When const is 'off',robustfit does not alter X.

      [b,stats] = robustfit(...) returns the structure stats, whose fieldscontain diagnostic statistics from the regression. The fields of stats are:

ols_s — Sigma estimate (RMSE) from ordinary least squares

robust_s — Robust estimate of sigma

mad_s — Estimate of sigma computed using the median absolute deviation ofthe residuals from their median; used for scaling residuals during iterativefitting

s — Final estimate of sigma, the larger of robust_s and a weighted averageof ols_s and robust_s

resid — Residual

rstud — Studentized residual (see regress for more information)

se — Standard error of coefficient estimates

covb — Estimated covariance matrix for coefficient estimates

coeffcorr — Estimated correlation of coefficient estimates

t — Ratio of b to se                                    p — p-values for t

w — Vector of weights forrobust fit           R — R factor in QRdecomposition of X

dfe — Degrees of freedom forerror            h — Vector of leveragevalues for least-squares fit

本帖隐藏的内容

一篇使用irls方法的文献!


M-EstimatorsIRLS MATLAB介绍可以参见书籍:

本帖隐藏的内容

张德丰的Matlab概率与数理统计分析


MATLAB统计分析与应用:40个案例分析



基于范数Homotopy参数选择的IRLS重要文献如下!以下三、四文献有重要的MATLAB代码,大家自己参考!!!按照顺序一步一步看!

本帖隐藏的内容

5 IRLS2.PDF
大小:(1.03 MB)

 马上下载




6 IRLS@.pdf
大小:(142.83 KB)

 马上下载



Third,IRLS Introduction based on  Eviews(如图)Eviews的操作这个大家自己摸索,我没有试过

1.png


选择RobustLS M-Estimation

在选项里面就可以找到加权函数的类型选项了

诸如(Huber Bisquare)

2.png







二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-9-18 20:19:14
谢谢楼主提供有分量、价值高的资源。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-9-18 20:29:16
老师们 这个你们可以了解下!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-9-18 20:30:41
thanks a lot
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-9-18 20:38:34
加权迭代最小二乘IRLS属于稳健回归方法,常用于样本较少的回归
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-9-18 20:39:50
Crsky7 发表于 2014-9-18 20:38
加权迭代最小二乘IRLS属于稳健回归方法,常用于样本较少的回归
一篇使用irls方法的文献!:
3 美联储退出策略的时机预测_栗亮.pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群