he followings are extracted from the EVIEWS4 Manual:
Deterministic Trend Specification
Your series may have nonzero means and deterministic trends as well as stochastic trends. Similarly, the cointegrating equations may have intercepts and deterministic trends. The asymptotic distribution of the LR test statistic for cointegration does not have the usual distribution and depends on the assumptions made with respect to deterministic trends. Therefore, in order to carry out the test, you need to make an assumption regarding the trend underlying your data.
For each row case in the dialog, the COINTEQ column lists the deterministic variables that appear inside the cointegrating relations (error correction term), while the OUTSIDE column lists the deterministic variables that appear in the VEC equation outside the cointegrating relations. Cases 2 and 4 do not have the same set of deterministic terms in the two columns. For these two cases, some of the deterministic term is restricted to belong only in the cointegrating relation. For cases 3 and 5, the deterministic terms are common in the two columns and the decomposition of the deterministic effects inside and outside the cointegrating space is not uniquely identified; see the technical discussion below.
In practice, cases 1 and 5 are rarely used. You should use case 1 only if you know that all series have zero mean. Case 5 may provide a good fit in-sample but will produce implausible forecasts out-of-sample. As a rough guide, use case 2 if none of the series appear to have a trend. For trending series, use case 3 if you believe all trends are stochastic; if you believe some of the series are trend stationary, use case 4.
If you are not certain which trend assumption to use, you may choose the Summary of all 5 trend assumptions option (case 6) to help you determine the choice of the trend assumption. This option indicates the number of cointegrating relations under each of the 5 trend assumptions and you will be able to see how sensitive the results of the test are to the assumption of trend.