<p><strong><font size="3"><span id="btAsinTitle">Fun and Games: A Text on Game Theory (Hardcover)</span>
                                <br/></font></strong>by <a href="http://www.amazon.co.uk/exec/obidos/search-handle-url?%5Fencoding=UTF8&amp;search-type=ss&amp;index=books-uk&amp;field-author=K.G.%20Binmore"><font color="#003399">K.G. Binmore</font></a> (Author) </p><p><a href="http://www.amazon.co.uk/gp/product/images/0669246034/sr=1-10/qid=1212282611/ref=dp_image_0?ie=UTF8&amp;n=266239&amp;s=books&amp;qid=1212282611&amp;sr=1-10" target="AmazonHelp"><img id="prodImage" height="240" alt="Fun and Games: A Text on Game Theory" src="http://ecx.images-amazon.com/images/I/41E9ZYFJ63L._SL500_AA240_.jpg" width="240" border="0"/></a></p><li><b>Hardcover:</b> 671 pages </li><li><b>Publisher:</b> Houghton Mifflin (1 Dec 1991) </li><li><b>Language</b> English </li><li><strong>Book Description:</strong> Binmore's groundbreaking text on game theory explores the manner in which rational people should interact when they have conflicting interests. While Binmore uses a light touch to outline key developments in theory, the text remains a serious exposition of a serious topic. In addition, his unique story-telling approach allows students to immediately apply game-theoretic skills to simple problems. Each chapter ends with a host of challenging exercises to help students practice the skills they have learned. The highly anticipated revision, expected in 2003, will include more coverage of cooperative game theory and a more accessible <font color="#000000">presentation</font>—with chapters broken up into smaller chunks and an abundance of economic examples integrated throughout the text.</li><li> 
 </li><li><strong><font size="4">Contents </font></strong><br/>Teaching Guide xv <br/>Introduction 1 <br/>0.1 What Is Game Theory About? 3 <br/>0.2 Where Is Game Theory Coming From? 11 <br/>0.3 Where Is Game Theory Going To? 13 <br/>0.4 What Can Game Theory Do for Us? 14 <br/>0.5 Conclusion 21 <br/><strong>1 Winning</strong> Out <br/>1.1 Introduction 25 <br/>1.2 The Rules of the Game 25 <br/>1.3 Strategies 30 <br/>1.4 Zermelo's Algorithm 32 <br/>1.5 Nim 35 <br/>1.6 Hex 37 <br/>1. 7 Chess 41 <br/>1.8 Rational Play? 46 <br/>1.9 Conflict and Cooperation 51 <br/>1.1 0 Exercises 57 <br/><strong>2 Taking Chances 65</strong>
                <br/>2.1 Introduction 67 <br/>2.2 Lotteries 72 <br/>2.3 Game Values 75 <br/>2.4 Duel 76 <br/>2.5 Parcheesi 81 <br/>2.6 Exercises 86 <br/><strong>3 Accounting for Tastes 93</strong>
                <br/>3.1 Rational Preferences 95 <br/>3.2 Utility Functions 96 <br/>3.3 Russian Roulette 99 <br/>3.4 Making Risky Choices 104 <br/>3.5 Utility Scales 112 <br/>3.6 The Noble Savage 115 <br/>3.7 Exercises 120 <br/><strong>4 Getting Paid Off 127 <br/></strong>4.1 Payoffs 129 <br/>4.2 Bimatrix Games 133 <br/>4.3 Matrices 135 <br/>4.4 Vectors 138 <br/>4.5 Hyperplanes 142 <br/>4.6 Domination 146 <br/>4.7 Russian Roulette Again 153 <br/>4.8 Exercises 159 <br/><strong>5 Making Deals 167 <br/></strong>5.1 Introduction 169 <br/>5.2 Convexity 169 <br/>5.3 Cooperative Payoff Regions 174 <br/>5.4 The Bargaining Set 176 <br/>5.5 Nash Bargaining Solutions 180 <br/>5.6 Dividing the Dollar 191 <br/>5.7 Cooperative and Noncooperative Games 195 <br/>5.8 Bargaining Models 196 <br/>5.9 Exercises 212 <br/><strong>6 Mixing Things Up 217</strong>
                <br/>6.1 Introduction 219 <br/>6.2 Minimax and Maximin 219 <br/>6.3 Safety First 224 <br/>6.4 Mixed Strategies 227 <br/>6.5 Zero-Sum Games 237 <br/>6.6 Separating Hyperplanes 245 <br/>6.7 Battleships 254 <br/>6.8 The Inspection Game 257 <br/>6.9 N ash Threat Game 261 <br/>6.10 Exercises 265 <br/><strong>7 Keeping Your Balance 275 <br/></strong>7.1 Reaction Curves 277 <br/>7.2 Oligopoly and Perfect Competition 286 <br/>7.3 Equilibrium Selection 295 <br/>7.4 N ash Demand Game 299 <br/>7.5 Pre-play Negotiation 304 <br/>7.6 Pre-play Randomization 316 <br/>7.7 When Do Nash Equilibria Exist? 319 <br/>7.8 Hexing Brouwer 323 <br/>7.9 Exercises 329 <br/><strong>8 Repeating Yourself 345</strong>
                <br/>8.1 Reciprocity 347 <br/>8.2 Repeating a Zero-Sum Game 348 <br/>8.3 Repeating the Prisoners' Dilemma 353 <br/>8.4 Infinite Repetitions 360 <br/>8.5 Social Contract 379 <br/>8.6 Exercises 382 <br/><strong>9 Adjusting to Circumstances 391</strong>
                <br/>9.1 Spontaneous Order 393 <br/>9.2 Bounded Rationality 396 <br/>9.3 Economic Libration 398 <br/>9.4 Social Libration 412 <br/>9.5 Biological Libration 414 <br/>9.6 Evolutionary Stability 422 <br/>9.7 The Evolution of Cooperation 429 <br/>9.8 Exercises 434 <br/><strong>10 Knowing Your Place 443</strong>
                <br/>10.1 Bob's Your Uncle 445 <br/>10.2 Knowledge 446 <br/>10.3 Possibility 449 <br/>10.4 Information Sets 454 <br/>10.5 Bayesian Updating 462 <br/>10.6 Common Knowledge 467 <br/>10.7 Agreeing to Disagree? 472 <br/>10.8 Common Knowledge in Game Theory 478 <br/>10.9 Exercises 488 <br/><strong>11 Knowing Who to Believe 499</strong>
                <br/>11.1 Complete and Incomplete Information 501 <br/>11.2 Typecasting 503 <br/>11.3 Bayesian Equilibrium 510 <br/>11.4 Continuous Random Variables 511 <br/>11.5 Duopoly with Incomplete Information 515 <br/>11.6 Purification 519 <br/>11.7 Auctions and Mechanism Design 523 <br/>11.8 Assessment Equilibrium 536 <br/>11.9 More Agreeing to Disagree 546 <br/>11.10 Exercises 549 <br/><strong>12 Bluffing It Out 571</strong>
                <br/>12.1 Poker 573 <br/>12.2 Conditional Probability Densities 577 <br/>12.3 Borel's Poker Model 579 <br/>12.4 Von Neumann's Poker Model 585 <br/>12.5 Why Bluff? 591 <br/>12.6 Nash and Shapley's Poker Model 593 <br/>12.7 Conclusion 602 <br/>Answers Al <br/><strong>Index A34</strong>
        </li>