全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
3422 2
2008-06-27
223033.rar
大小:(12.54 MB)

只需: 5 个论坛币  马上下载

本附件包括:

  • c9.pdf
  • c10.pdf
  • c11.pdf
  • c12.pdf
  • c13.pdf
  • c14.pdf
  • c15.pdf
  • front-matter.pdf
  • c16.pdf
  • back-matter.pdf
  • c1.pdf
  • c2.pdf
  • c3.pdf
  • c4.pdf
  • c5.pdf
  • c6.pdf
  • c7.pdf
  • c8.pdf

非常全的数量金融入门教材,并且含习题解答.有志于金融工程的朋友一定会收益非浅.最新版本2007年!

[此贴子已经被angelboy于2008-8-14 13:26:27编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2008-6-27 13:06:00

讲点内容什么的,你就放个标题没人买的~

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2008-8-14 13:27:00

简介:In recent years products based on financial derivatives have become an indispensable
tool for risk managers and investors. Insurance products have become
part of almost every personal and business portfolio. The management of mutual
and pension funds has gained in importance for most individuals. Banks,
insurance companies and other corporations are increasingly using financial
and insurance instruments for the active management of risk. An increasing
range of securities allows risks to be hedged in a way that can be closely tailored
to the specific needs of particular investors and companies. The ability
to handle efficiently and exploit successfully the opportunities arising from
modern quantitative methods is now a key factor that differentiates market
participants in both the finance and insurance fields. For these reasons it is
important that financial institutions, insurance companies and corporations
develop expertise in the area of quantitative finance, where many of the associated
quantitative methods and technologies emerge.

BasicNotation ............................................XIII
1PreliminariesfromProbabilityTheory.....................1
1.1DiscreteRandomVariablesandDistributions...............1
1.2ContinuousRandomVariablesandDistributions............11
1.3MomentsofRandomVariables............................22
1.4JointDistributionsandRandomVectors...................39
1.5Copulas(*).............................................50
1.6ExercisesforChapter1..................................53
2StatisticalMethods ........................................55
2.1LimitTheorems.........................................55
2.2Con?denceIntervals.....................................63
2.3EstimationMethods.....................................70
2.4MaximumLikelihoodEstimation..........................78
2.5NormalVarianceMixtureModels..........................81
2.6DistributionofIndexLog-Returns.........................84
2.7ConvergenceofRandomSequences........................92
2.8ExercisesforChapter2..................................98
3ModelingviaStochasticProcesses .........................99
3.1IntroductiontoStochasticProcesses.......................99
3.2CertainClassesofStochasticProcesses.....................106
3.3DiscreteTimeMarkovChains.............................110
3.4ContinuousTimeMarkovChains..........................113
3.5PoissonProcesses........................................120
3.6LevyProcesses(*).......................................126
3.7InsuranceRiskModeling(*)..............................128
3.8ExercisesforChapter3..................................131

4DiusionProcesses ........................................133
4.1ContinuousMarkovProcesses .............................133
4.2ExamplesforContinuousMarkovProcesses.................136
4.3Di?usionProcesses ......................................141
4.4KolmogorovEquations..................................145
4.5Di?usionswithStationaryDensities.......................154
4.6Multi-DimensionalDi?usionProcesses(*)..................159
4.7ExercisesforChapter4..................................161
5MartingalesandStochasticIntegrals.......................163
5.1Martingales.............................................163
5.2QuadraticVariationandCovariation.......................174
5.3GainsfromTradeasStochasticIntegral....................187
5.4It?oIntegralforWienerProcesses..........................193
5.5StochasticIntegralsforSemimartingales(*).................197
5.6ExercisesforChapter5..................................203
6TheItoFormula ...........................................205
6.1TheStochasticChainRule...............................205
6.2MultivariateIt?oFormula.................................209
6.3SomeApplicationsoftheIt?oFormula......................213
6.4ExtensionsoftheIt?oFormula.............................222
6.5LevyˉsTheorem(*......................................227
6.6AProofoftheIt?oFormula(*)............................230
6.7ExercisesforChapter6..................................234

7StochasticDierentialEquations ..........................237
7.1SolutionofaStochasticDi?erentialEquation...............237
7.2LinearSDEwithAdditiveNoise...........................241
7.3LinearSDEwithMultiplicativeNoise......................243
7.4VectorStochasticDi?erentialEquations....................246
7.5ConstructingExplicitSolutionsofSDEs....................248
7.6JumpDi?usions(*)......................................254
7.7ExistenceandUniqueness(*).............................261
7.8MarkovianSolutionsofSDEs(*)..........................272
7.9ExercisesforChapter7..................................275
8IntroductiontoOptionPricing ............................277
8.1Options................................................277
8.2OptionsundertheBlack-ScholesModel....................281
8.3TheBlack-ScholesFormula...............................288
8.4SensitivitiesforEuropeanCallOption.....................290
8.5EuropeanPutOption....................................295
8.6HedgeSimulation........................................298
8.7SquaredBesselProcesses(*) ..............................304

ContentsXI
8.8ExercisesforChapter8..................................317
9VariousApproachestoAssetPricing ......................319
9.1RealWorldPricing......................................319
9.2ActuarialPricing........................................329
9.3CapitalAssetPricingModel..............................332
9.4RiskNeutralPricing.....................................336
9.5GirsanovTransformationandBayesRule(*)................345
9.6ChangeofNumeraire(*).................................350
9.7Feynman-KacFormula(*)................................356
9.8ExercisesforChapter9..................................364
10ContinuousFinancialMarkets .............................367
10.1PrimarySecurityAccountsandPortfolios..................367
10.2GrowthOptimalPortfolio................................372
10.3SupermartingaleProperty................................375
10.4RealWorldPricing......................................378
10.5GOPasBestPerformingPortfolio.........................386
10.6Diversi?edPortfoliosinCFMs............................389
10.7ExercisesforChapter10.................................402
11PortfolioOptimization.....................................403
11.1LocallyOptimalPortfolios................................404
11.2MarketPortfolioandGOP...............................415
11.3ExpectedUtilityMaximization............................419
11.4PricingNonreplicablePayo?s.............................427
11.5Hedging...............................................430
11.6ExercisesforChapter11.................................437

12ModelingStochasticVolatility .............................439
12.1StochasticVolatility.....................................439
12.2Modi?edCEVModel....................................444
12.3LocalVolatilityModels...................................461
12.4StochasticVolatilityModels..............................472
12.5ExercisesforChapter12.................................481
13MinimalMarketModel ....................................483
13.1ParametrizationviaVolatilityorDrift.....................483
13.2StylizedMinimalMarketModel...........................488
13.3DerivativesundertheMMM..............................496
13.4MMMwithRandomScaling(*)...........................503
13.5ExercisesforChapter13.................................511

14MarketswithEventRisk ..................................513
14.1JumpDi?usionMarkets..................................513
14.2Diversi?edPortfolios.....................................523
14.3Mean-VariancePortfolioOptimization.....................532
14.4RealWorldPricingforTwoMarketModels.................536
14.5ExercisesforChapter14.................................549
15NumericalMethods........................................551
15.1RandomNumberGeneration..............................551
15.2ScenarioSimulation......................................558
15.3ClassicalMonteCarloMethod............................570
15.4MonteCarloSimulationforSDEs.........................578
15.5VarianceReductionofFunctionalsofSDEs.................587
15.6TreeMethods...........................................591
15.7FiniteDi?erenceMethods................................600
15.8ExercisesforChapter15.................................611
16SolutionsforExercises.....................................615
Acknowledgements ........................................667
References.....................................................669
AuthorIndex..................................................685
Index ..........................................................691

[/UseMoney]

MathematicsSubjectClassication(2000):62P05,60G35,62P20
JELClassication:G10,G13
LibraryofCongressControlNumber:2006932290
ISBN-103-540-26212-1 SpringerBerlinHeidelbergNewYork
ISBN-13978-3-540-26212-1 SpringerBerlinHeidelbergNewYork
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis
concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,
reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication
orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,
1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations
areliabletoprosecutionundertheGermanCopyrightLaw.
SpringerisapartofSpringerScience+BusinessMedia
springer.com
Springer-VerlagBerlinHeidelberg2006
Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot
imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:WMXDesignGmbH,Heidelberg
A
T Xmacropackage
Typesetting:bytheauthorsusingaSpringerL
E
Production:LE-T XJelonek,Schmidt&VcklerGbR,Leipzig
E
Printedonacid-freepaper 41/3100YL-543210

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群