全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
8536 2
2014-12-11
stata进行工具变量估计时为什么要把外生变量也作为工具变量呢?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-12-12 14:17:01
解释变量中除了内生变量其他都会作为工具变量的
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-12-12 15:15:44
http://www.stata.com/support/faqs/statistics/instrumental-variables-regression/

Must I use all of my exogenous variables as instruments when estimating instrumental variables regression?
Title                 Two-stage least-squares regression
Author         Vince Wiggins, StataCorp
Date         July 2000; updated June 2013
Note: This model could also be fit with sem, using maximum likelihood instead of a two-step method.
You can find examples for recursive models fit with sem in the “Structural models 2: Dependencies between endogenous variables” section of [SEM] intro 5 — Tour of models.

Someone posed the following question:

I am estimating an equation:
        Y = a + bX + cZ + dW
I then want to instrument W with Q. I know the first-stage regression is supposed to be
        W = e + fX + gZ + hQ
(i.e., use all the exogenous variables in the first stage). Actually this is automatically done if I use the ivregress command. However, I only want to use Q to instrument W without using X and Z in the first stage. Is there a way I can do it in Stata? I can regress W on Q and get the predicted W, and then use it in the second-stage regression. The standard errors will, however, be incorrect.
ivregress will not let you do this and, moreover, if you believe W to be endogenous because it is part of a system, then you must include X and Z as instruments, or you will get biased estimates for b, c, and d.

Consider the system

        Y1 = a0 + a1*Y2 + a2*X1 + a3*X2 + e1               (1)

        Y2 = b0 + b1*Y1 + b2*X3 + b3*X4 + e2               (2)
Warning: Assume we are estimating structural equation (1); if X1 and X2 are exogenous, then they must be kept as instruments or your estimates will be biased. In a general system, such exogenous variables must be used as instruments for any endogenous variables when the instrumented value for the endogenous variables appears in an equation in which the exogenous variable also appears.

Consider the reduced forms of your two equations:

        Y1 = e0 + e1*X1 + e2*X2 + e3*X3 + e4*x4 + u1        (1r)

        Y2 = f0 + f1*X1 + f2*X2 + f3*X3 + f4*x4 + u2        (2r)
where e# and f# are combinations of the a# and b# coefficients from (1) and (2) and u1 and u2 are linear combinations of e1 and e2.

All exogenous variables appear in each equation for an endogenous variable. This is the nature of simultaneous systems, so efficiency argues that all exogenous variables be included as instruments for each endogenous variable.

Here is the real problem. Take (1): the reduced-form equation for Y2, (2r), clearly shows that Y2 is correlated with X2 (by the coefficient f2). If we do not include X2 among the instruments for Y2, then we will have failed to account for the correlation of Y2 with X2 in its instrumented values. Since we did not account for this correlation, when we estimate (1) with the instrumented values for Y2, the coefficient a3 will be forced to account for this correlation. This approach will lead to biased estimates of both a1 and a3.

For a brief reference, see Baltagi (2002). See the whole discussion of 2SLS, particularly the paragraph after equation 11.40, on page 277. (I have no idea why this issue is not emphasized in more books.)

Failing to include X4 affects only efficiency and not bias.

However, there is one case where it is not necessary to include X1 and X2 as instruments for Y2. That is when the system is triangular such that Y2 does not depend on Y1, but you believe it is weakly endogenous because the disturbances are correlated between the equations. You are still consistent here to do what ivregress does and retain X1 and X2 as instruments. They are, however, no longer required. Then you could do what you suggested and just regress on the predicted instruments from the first stage.

If you do use this method of indirect least squares, you will have to perform the adjustment to the covariance matrix yourself. Consider the structural equation

        y1 = y2 + x1 + e
where you have an instrument z1 and you do not think that y2 is a function of y1.

The following example uses only z1 as an instrument for y2. Let’s begin by creating a dataset (containing made-up data) on y1, y2, x1, and z1:

. sysuse auto
(1978 Automobile Data)

. rename price y1
. rename mpg y2
. rename displacement z1
. rename turn x1
Now we perform the first-stage regression and get predictions for the instrumented variable, which we must do for each endogenous right-hand-side variable.


. regress y2 z1

      Source                        SS       df       MS                   Number of obs =      74
                                      F(  1,    72) =   71.41
       Model                   1216.67534     1  1216.67534                   Prob > F      =  0.0000
    Residual                   1226.78412    72  17.0386683                   R-squared     =  0.4979
                                      Adj R-squared =  0.4910
       Total                  2443.45946    73  33.4720474                   Root MSE      =  4.1278


          y2                        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                  
          z1                    -.0444536   .0052606    -8.45   0.000    -.0549405   -.0339668
       _cons                     30.06788   1.143462    26.30   0.000     27.78843    32.34733


. predict double y2hat
(option xb assumed; fitted values)

  * perform IV regression

. regress y1 y2hat x1

      Source                        SS       df       MS                   Number of obs =      74
                                      F(  2,    71) =   12.41
       Model                    164538571     2  82269285.5                   Prob > F      =  0.0000
    Residual                    470526825    71  6627138.38                   R-squared     =  0.2591
                                      Adj R-squared =  0.2382
       Total                   635065396    73  8699525.97                   Root MSE      =  2574.3


          y1                        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                  
       y2hat                    -463.4688    117.187    -3.95   0.000    -697.1329   -229.8046
          x1                    -126.4979   108.7468    -1.16   0.249    -343.3328    90.33697
       _cons                     21051.36   6451.837     3.26   0.002     8186.762    33915.96

Now we correct the variance–covariance by applying the correct mean squared error:

. rename y2hat y2hold
. rename y2 y2hat
. predict double res, residual
. rename y2hat y2                       /* put back real y2 */
. rename y2hold y2hat  
. replace res = res^2  
(74 real changes made)

. summarize res

    Variable                       Obs        Mean    Std. Dev.       Min        Max
                  
         res                        74     7553657    1.43e+07   117.4375   1.06e+08


. scalar realmse = r(mean)*r(N)/e(df_r)
                                  /* much ado about small sample */
. matrix bmatrix = e(b)
. matrix Vmatrix = e(V)
. matrix Vmatrix = e(V) * realmse / e(rmse)^2
. ereturn post bmatrix Vmatrix, noclear
. ereturn display
                                    Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                  
       y2hat                    -463.4688   127.7267    -3.63   0.001    -718.1485    -208.789
          x1                    -126.4979   118.5274    -1.07   0.289    -362.8348    109.8389
       _cons                     21051.36   7032.111     2.99   0.004      7029.73    35072.99

Reference
Baltagi, B. H. 2002. Econometrics. New York: Springer.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群